elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

MsRi-CCF: Multi-Scale and Rotation-Insensitive Convolutional Channel Features for Geospatial Object Detection

Wu, Xin und Hong, Danfeng und Ghamisi, Pedram und Li, Wei und Tao, Ran (2018) MsRi-CCF: Multi-Scale and Rotation-Insensitive Convolutional Channel Features for Geospatial Object Detection. Remote Sensing, 10, 1910/1-1910/20. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs10121990. ISSN 2072-4292.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
6MB

Offizielle URL: https://www.mdpi.com/2072-4292/10/12/1990

Kurzfassung

Geospatial object detection is a fundamental but challenging problem in the remote sensing community. Although deep learning has shown its power in extracting discriminative features, there is still room for improvement in its detection performance, particularly for objects with large ranges of variations in scale and direction. To this end, a novel approach, entitled multi-scale and rotation-insensitive convolutional channel features (MsRi-CCF), is proposed for geospatial object detection by integrating robust low-level feature generation, classifier generation with outlier removal, and detection with a power law. The low-level feature generation step consists of rotation-insensitive and multi-scale convolutional channel features, which were obtained by learning a regularized convolutional neural network (CNN) and integrating multi-scaled convolutional feature maps, followed by the fine-tuning of high-level connections in the CNN, respectively. Then, these generated features were fed into AdaBoost (chosen due to its lower computation and storage costs) with outlier removal to construct an object detection framework that facilitates robust classifier training. In the test phase, we adopted a log-space sampling approach instead of fine-scale sampling by using the fast feature pyramid strategy based on a computable power law. Extensive experimental results demonstrate that compared with several state-of-the-art baselines, the proposed MsRi-CCF approach yields better detection results, with 90.19% precision with the satellite dataset and 81.44% average precision with the NWPU VHR-10 datasets. Importantly, MsRi-CCF incurs no additional computational cost, which is only 0.92 s and 0.7 s per test image on the two datasets. Furthermore, we determined that most previous methods fail to gain an acceptable detection performance, particularly when they face several obstacles, such as deformations in objects (e.g., rotation, illumination, and scaling). Yet, these factors are effectively addressed by MsRi-CCF, yielding a robust geospatial object detection method.

elib-URL des Eintrags:https://elib.dlr.de/128210/
Dokumentart:Zeitschriftenbeitrag
Titel:MsRi-CCF: Multi-Scale and Rotation-Insensitive Convolutional Channel Features for Geospatial Object Detection
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Wu, Xinaixueshuqian (at) gmail.comNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hong, DanfengDanfeng.Hong (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Ghamisi, Pedramp.ghamisi (at) gmail.comNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Li, WeiBeijing Institute of TechnologyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Tao, RanBeijing Institute of TechnologyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Dezember 2018
Erschienen in:Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:10
DOI:10.3390/rs10121990
Seitenbereich:1910/1-1910/20
Verlag:Multidisciplinary Digital Publishing Institute (MDPI)
ISSN:2072-4292
Status:veröffentlicht
Stichwörter:AdaBoost; deep learning; object detection; optical remote sensing imagery; outlier removal; multi-scale aggregation; rotation-insensitive
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben hochauflösende Fernerkundungsverfahren (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Hong, Danfeng
Hinterlegt am:05 Jul 2019 10:13
Letzte Änderung:14 Dez 2019 04:27

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.