Zhang, Guichen und Ghamisi, Pedram und Zhu, Xiao Xiang (2019) Fusion of Heterogeneous Earth Observation Data for the Classification of Local Climate Zones. IEEE Transactions on Geoscience and Remote Sensing, 57 (10), Seiten 7623-7642. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2019.2914967. ISSN 0196-2892.
PDF
- Postprintversion (akzeptierte Manuskriptversion)
8MB |
Offizielle URL: https://ieeexplore.ieee.org/document/8765334
Kurzfassung
This paper proposes a novel framework for fusing multi-temporal, multispectral satellite images and OpenStreetMap(OSM) data for the classification of local climate zones (LCZs).Feature stacking is the most commonly-used method of data fusion but does not consider the heterogeneity of multimodal optical images and OSM data, which becomes its main drawback. The proposed framework processes two data sources separately and then combines them at the model level through two fusion models (the land use fusion model and building fusion model),which aim to fuse optical images with land use and buildings layers of OSM data, respectively. In addition, a new approach to detecting building incompleteness of OSM data is proposed. The proposed framework was trained and tested using data from the2017 IEEE GRSS Data Fusion Contest, and further validated on one additional test set containing test samples which are manually labeled in Munich and New York. Experimental results have indicated that compared to the feature stacking-based baseline framework the proposed framework is effective in fusing optical images with OSM data for the classification of LCZs with high generalization capability on a large scale. The classification accuracy of the proposed framework outperforms the baseline framework by more than 6% and 2%, while testing on the test set of 2017 IEEE GRSS Data Fusion Contest and the additional test set, respectively. In addition, the proposed framework is less sensitive to spectral diversities of optical satellite images and thus achieves more stable classification performance than state-of-the-art frameworks.
elib-URL des Eintrags: | https://elib.dlr.de/128185/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Zusätzliche Informationen: | so2sat | ||||||||||||||||
Titel: | Fusion of Heterogeneous Earth Observation Data for the Classification of Local Climate Zones | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | Juli 2019 | ||||||||||||||||
Erschienen in: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 57 | ||||||||||||||||
DOI: | 10.1109/TGRS.2019.2914967 | ||||||||||||||||
Seitenbereich: | Seiten 7623-7642 | ||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Local climate zones (LCZs), heterogeneous datafusion, satellite images, OpenStreetMap (OSM), canonical corre-lation forest (CCF) | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
Hinterlegt von: | Wang, Yuanyuan | ||||||||||||||||
Hinterlegt am: | 03 Jul 2019 09:55 | ||||||||||||||||
Letzte Änderung: | 31 Okt 2023 14:06 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags