Puang, En Yen und Lehner, Peter und Marton, Zoltan-Csaba und Durner, Maximilian und Triebel, Rudolph und Albu-Schäffer, Alin Olimpiu (2019) Visual Repetition Sampling for Robot Manipulation Planning. In: 2019 International Conference on Robotics and Automation, ICRA 2019. IEEE. ICRA 2019, 2019-05-20 - 2019-05-24, Montreal. doi: 10.1109/ICRA.2019.8793942. ISBN 978-153866026-3. ISSN 1050-4729.
PDF
3MB |
Offizielle URL: https://ieeexplore.ieee.org/document/8793942
Kurzfassung
One of the main challenges in sampling-based motion planners is to find an efficient sampling strategy. While methods such as Rapidly-exploring Random Tree (RRT) have shown to be more reliable in complex environments than optimization-based methods, they often require longer planning times, which reduces their usability for real-time applications. Recently, biased sampling methods have shown to remedy this issue. For example Gaussian Mixture Models (GMMs) have been used to sample more efficiently in feasible regions of the configuration space. Once the GMM is learned, however, this approach does not adapt its biases to individual planning scene during inference. Hence, we propose in this work a more efficient sampling strategy to further bias the GMM based on visual input upon query. We employ an autoencoder trained entirely in simulation to extract features from depth images and use the latent representation to adjust the weights of each Gaussian components in the GMM. We show empirically that this improves the sampling efficiency of an RRT motion planner in both real and simulated scenes.
elib-URL des Eintrags: | https://elib.dlr.de/128182/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||||||||||
Titel: | Visual Repetition Sampling for Robot Manipulation Planning | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | 2019 | ||||||||||||||||||||||||||||
Erschienen in: | 2019 International Conference on Robotics and Automation, ICRA 2019 | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||
DOI: | 10.1109/ICRA.2019.8793942 | ||||||||||||||||||||||||||||
Verlag: | IEEE | ||||||||||||||||||||||||||||
ISSN: | 1050-4729 | ||||||||||||||||||||||||||||
ISBN: | 978-153866026-3 | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | Motion Planning, Deep Learning | ||||||||||||||||||||||||||||
Veranstaltungstitel: | ICRA 2019 | ||||||||||||||||||||||||||||
Veranstaltungsort: | Montreal | ||||||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 20 Mai 2019 | ||||||||||||||||||||||||||||
Veranstaltungsende: | 24 Mai 2019 | ||||||||||||||||||||||||||||
Veranstalter : | IEEE | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Autonome, lernende Roboter [SY] | ||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition | ||||||||||||||||||||||||||||
Hinterlegt von: | Puang, En Yen | ||||||||||||||||||||||||||||
Hinterlegt am: | 01 Jul 2019 10:46 | ||||||||||||||||||||||||||||
Letzte Änderung: | 21 Okt 2024 11:02 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags