Qiu, Chunping und Mou, LiChao und Schmitt, Michael und Zhu, Xiao Xiang (2019) Local climate zone-based urban land cover classification from multi-seasonal Sentinel-2 images with a recurrent residual network. ISPRS Journal of Photogrammetry and Remote Sensing, 154, Seiten 151-162. Elsevier. doi: 10.1016/j.isprsjprs.2019.05.004. ISSN 0924-2716.
PDF
- Verlagsversion (veröffentlichte Fassung)
17MB |
Kurzfassung
The local climate zone (LCZ) scheme was originally proposed to provide an interdisciplinary taxonomy for urban heat island (UHI) studies. In recent years, the scheme has also become a starting point for the development of higher-level products, as the LCZ classes can help provide a generalized understanding of urban structures and land uses. LCZ mapping can therefore theoretically aid in fostering a better understanding of spatio-temporal dynamics of cities on a global scale. However, reliable LCZ maps are not yet available globally. As a first step toward automatic LCZ mapping, this work focuses on LCZ-derived land cover classification, using multi-seasonal Sentinel-2 images. We propose a recurrent residual network (Re-ResNet) architecture that is capable of learning a joint spectral-spatial-temporal feature representation within a unitized framework. To this end, a residual convolutional neural network (ResNet) and a recurrent neural network (RNN) are combined into one end-to-end architecture. The ResNet is able to learn rich spectral-spatial feature representations from single-seasonal imagery, while the RNN can effectively analyze temporal dependencies of multi-seasonal imagery. Cross validations were carried out on a diverse dataset covering seven distinct European cities, and a quantitative analysis of the experimental results revealed that the combined use of the multi-temporal information and Re-ResNet results in an improvement of approximately 7 percent points in overall accuracy. The proposed framework has the potential to produce consistent-quality urban land cover and LCZ maps on a large scale, to support scientific progress in fields such as urban geography and urban climatology.
elib-URL des Eintrags: | https://elib.dlr.de/128132/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Local climate zone-based urban land cover classification from multi-seasonal Sentinel-2 images with a recurrent residual network | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2019 | ||||||||||||||||||||
Erschienen in: | ISPRS Journal of Photogrammetry and Remote Sensing | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 154 | ||||||||||||||||||||
DOI: | 10.1016/j.isprsjprs.2019.05.004 | ||||||||||||||||||||
Seitenbereich: | Seiten 151-162 | ||||||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||||||
ISSN: | 0924-2716 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Land cover Local climate zones (LCZs) Sentinel-2 Multi-seasonal Residual convolutional neural network (ResNet) Long short-term memory (LSTM) Recurrent neural network (RNN) | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
Hinterlegt von: | Hoffmann, Eike Jens | ||||||||||||||||||||
Hinterlegt am: | 29 Okt 2019 12:32 | ||||||||||||||||||||
Letzte Änderung: | 03 Nov 2023 09:18 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags