Hoffmann, Eike Jens und Werner, Martin und Zhu, Xiao Xiang (2019) Mutual Information Analysis of Social Media Images and Building Functions. In: 2019 International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 1-4. IGARSS 2019, 2019-07-28 - 2019-08-02, Yokohama, Japan. doi: 10.1109/IGARSS.2019.8898144.
PDF
2MB |
Offizielle URL: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8898144
Kurzfassung
Understanding urban dynamics requires detailed insights into urban land use. On the most fine-grained level this classification is done on single building instance levels. This level of detail can hardly be solved using remote sensing only, but requires complementary data. Social media images are a promising additional image data source since they are captured on a global scale in vast volumes. In this study we investigate the relation between objects showing up in geotagged social media images and functions of buildings proximate to the image location. We propose a rasterization approach to embed features from images and labels from a target domain to calculate mutual information both domains share. In our study area of Los Angeles, USA, we show that using object detection is a valuable way of extracting features from social media images to predict building functions. Furthermore, we present the most significant object types for five types of buildings
elib-URL des Eintrags: | https://elib.dlr.de/128122/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Mutual Information Analysis of Social Media Images and Building Functions | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2019 | ||||||||||||||||
Erschienen in: | 2019 International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.1109/IGARSS.2019.8898144 | ||||||||||||||||
Seitenbereich: | Seiten 1-4 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Building Classification, Social Media, Building Usage, Social Media Image, Complementary Data Source, Urbanland use | ||||||||||||||||
Veranstaltungstitel: | IGARSS 2019 | ||||||||||||||||
Veranstaltungsort: | Yokohama, Japan | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 28 Juli 2019 | ||||||||||||||||
Veranstaltungsende: | 2 August 2019 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Geowissenschaftl. Fernerkundungs- und GIS-Verfahren | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
Hinterlegt von: | Hoffmann, Eike Jens | ||||||||||||||||
Hinterlegt am: | 29 Okt 2019 10:21 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:31 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags