elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Model Fusion for Building Type Classification from Aerial and Street View Images

Hoffmann, Eike Jens und Wang, Yuanyuan und Werner, Martin und Kang, Jian und Zhu, Xiao Xiang (2019) Model Fusion for Building Type Classification from Aerial and Street View Images. Remote Sensing, 11 (11), 1259/1-1259/20. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs11111259. ISSN 2072-4292.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
2MB

Offizielle URL: http://dx.doi.org/10.3390/rs11111259

Kurzfassung

This article addresses the question of mapping building functions jointly using both aerial and street view images via deep learning techniques. One of the central challenges here is determining a data fusion strategy that can cope with heterogeneous image modalities. We demonstrate that geometric combinations of the features of such two types of images, especially in an early stage of the convolutional layers, often lead to a destructive effect due to the spatial misalignment of the features. Therefore, we address this problem through a decision-level fusion of a diverse ensemble of models trained from each image type independently. In this way, the significant differences in appearance of aerial and street view images are taken into account. Compared to the common multi-stream end-to-end fusion approaches proposed in the literature, we are able to increase the precision scores from 68% to 76%. Another challenge is that sophisticated classification schemes needed for real applications are highly overlapping and not very well defined without sharp boundaries. As a consequence, classification using machine learning becomes significantly harder. In this work, we choose a highly compact classification scheme with four classes, commercial, residential, public, and industrial because such a classification has a very high value to urban geography being correlated with socio-demographic parameters such as population density and income

elib-URL des Eintrags:https://elib.dlr.de/128115/
Dokumentart:Zeitschriftenbeitrag
Titel:Model Fusion for Building Type Classification from Aerial and Street View Images
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Hoffmann, Eike JensTU Münchenhttps://orcid.org/0000-0001-7702-0403NICHT SPEZIFIZIERT
Wang, YuanyuanTUMhttps://orcid.org/0000-0002-0586-9413NICHT SPEZIFIZIERT
Werner, MartinDLRNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Kang, JianTUMNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Zhu, Xiao XiangDLR-IMF/TUM-SiPEONICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Juni 2019
Erschienen in:Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:11
DOI:10.3390/rs11111259
Seitenbereich:1259/1-1259/20
Verlag:Multidisciplinary Digital Publishing Institute (MDPI)
ISSN:2072-4292
Status:veröffentlicht
Stichwörter:street view image; aerial image; model fusion; building type classification; building function; CNN; urban land use; land cover
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Geowissenschaftl. Fernerkundungs- und GIS-Verfahren
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Hoffmann, Eike Jens
Hinterlegt am:28 Jun 2019 10:51
Letzte Änderung:08 Nov 2023 08:19

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.