Hu, Jingliang und Hong, Danfeng und Wang, Yuanyuan und Zhu, Xiao Xiang (2019) A Topological Data Analysis Guided Fusion Algorithm: MAPPER-Regularized Manifold Alignment. In: 2019 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 1-4. IGARSS 2019, 2019-07-28 - 2019-08-02, Yokohama, Japan. doi: 10.1109/IGARSS.2019.8898471.
PDF
2MB |
Offizielle URL: https://ieeexplore.ieee.org/abstract/document/8898471
Kurzfassung
Hyperspectral images and polarimetric synthetic aperture radar (PolSAR) data are two important data sources, yet they barely appear under the same scope, even though multi-modal data fusion is attracting more and more attention. To our best knowledge, this paper investigates for the first time semi-supervised manifold alignment (SSMA) for the fusion of the hyperspectral image and PolSAR data. The SSMA searches a latent space where different data sources are aligned, which is accomplished by using the label information and the topological structure of the data. This paper is the first attempt to apply topological data analysis (TDA), a recent mathematic sub-field of data analysis, in remote sensing. It aims to reveal relevant information from the shape of a data in its feature space, and has been proven powerful in medicine. The paper also proposes a novel algorithm, MAPPER-regularized manifold alignment, which embeds the TDA into a semi-supervised manifold alignment for the fusion of the hyperspectral image and PolSAR data. The proposed algorithm exhibits superior performance in fusing a simulated EnMAP data set and a Sentinel-1 data set for an image of Berlin.
elib-URL des Eintrags: | https://elib.dlr.de/128105/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||
Titel: | A Topological Data Analysis Guided Fusion Algorithm: MAPPER-Regularized Manifold Alignment | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2019 | ||||||||||||||||||||
Erschienen in: | 2019 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
DOI: | 10.1109/IGARSS.2019.8898471 | ||||||||||||||||||||
Seitenbereich: | Seiten 1-4 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Classification, data fusion, EnMAP, hyperspectral image, land cover, land use, manifold alignment, MAPPER, PolSAR, semi-supervised learning, Sentinel-1, topological data analysis (TDA) | ||||||||||||||||||||
Veranstaltungstitel: | IGARSS 2019 | ||||||||||||||||||||
Veranstaltungsort: | Yokohama, Japan | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 28 Juli 2019 | ||||||||||||||||||||
Veranstaltungsende: | 2 August 2019 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
Hinterlegt von: | Hu, Jingliang | ||||||||||||||||||||
Hinterlegt am: | 28 Jun 2019 10:48 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:31 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags