elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

MIMA: MAPPER-Induced Manifold Alignment for Semi-Supervised Fusion of Optical Image and Polarimetric SAR Data

Hu, Jingliang und Hong, Danfeng und Zhu, Xiao Xiang (2019) MIMA: MAPPER-Induced Manifold Alignment for Semi-Supervised Fusion of Optical Image and Polarimetric SAR Data. IEEE Transactions on Geoscience and Remote Sensing, 57 (11), Seiten 9025-9040. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2019.2924113. ISSN 0196-2892.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://ieeexplore.ieee.org/document/8802291

Kurzfassung

Multi-modal data fusion has recently been shown promise in classification tasks in remote sensing. Optical data and radar data, two important yet intrinsically different data sources, are attracting more and more attention for potential data fusion. It is already widely known that, a machine learning based methodology often yields excellent performance. However, the methodology relies on a large training set, which is very expensive to achieve in remote sensing. The semi-supervised manifold alignment (SSMA), a multi-modal data fusion algorithm, has been designed to amplify the impact of an existing training set by linking labeled data to unlabeled data via unsupervised techniques. In this paper, we explore the potential of SSMA in fusing optical data and polarimetric SAR data, which are multi-sensory data sources. Furthermore, we propose a MAPPER-induced manifold alignment (MIMA) for semi-supervised fusion of multi-sensory data sources. Our proposed method unites SSMA with MAPPER, which is developed from the emerging topological data analysis (TDA) field. To our best knowledge, this is the first time that SSMA has been applied on fusing optical data and SAR data, and also the first time that TDA has been applied in remote sensing. The conventional SSMA derives a topological structure using k-nearest-neighbor (kNN), while MIMA employs MAPPER, which considers the field knowledge and derives a novel topological structure through the spectral clustering in a data-driven fashion. Experiment results on data fusion with respect to land cover land use classification and local climate zone classification suggest superior performance of MIMA.

elib-URL des Eintrags:https://elib.dlr.de/128103/
Dokumentart:Zeitschriftenbeitrag
Titel:MIMA: MAPPER-Induced Manifold Alignment for Semi-Supervised Fusion of Optical Image and Polarimetric SAR Data
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Hu, Jingliangjingliang.hu (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hong, Danfengdanfeng.hong (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Zhu, Xiao Xiangxiao.zhu (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:August 2019
Erschienen in:IEEE Transactions on Geoscience and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:57
DOI:10.1109/TGRS.2019.2924113
Seitenbereich:Seiten 9025-9040
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:0196-2892
Status:veröffentlicht
Stichwörter:Hyperspectral image, MAPPER, multi-modal data fusion, multi-sensory data fusion, multispectral image, PolSAR, semi-supervised manifold alignment (SSMA), topological data analysis (TDA)
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben hochauflösende Fernerkundungsverfahren (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Hu, Jingliang
Hinterlegt am:28 Jun 2019 10:43
Letzte Änderung:31 Okt 2023 13:59

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.