elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

A Comparative Review of Manifold Learning Techniques for Hyperspectral and Polarimetric SAR Image Fusion

Hu, Jingliang und Hong, Danfeng und Wang, Yuanyuan und Zhu, Xiao Xiang (2019) A Comparative Review of Manifold Learning Techniques for Hyperspectral and Polarimetric SAR Image Fusion. Remote Sensing, 11 (6), Seiten 1-28. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs11060681. ISSN 2072-4292.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
16MB

Offizielle URL: https://www.mdpi.com/2072-4292/11/6/681

Kurzfassung

In remote sensing, hyperspectral and polarimetric synthetic aperture radar (PolSAR) images are the two most versatile data sources for a wide range of applications such as land use land cover classification. However, the fusion of these two data sources receive less attention than many other, because of their scarce data availability, and relatively challenging fusion task caused by their distinct imaging geometries. Among the existing fusion methods, including manifold learning-based, kernel-based, ensemble-based, and matrix factorization, manifold learning is one of most celebrated techniques for the fusion of heterogeneous data. Therefore, this paper aims to promote the research in hyperspectral and PolSAR data fusion, by providing a comprehensive comparison between existing manifold learning-based fusion algorithms. We conducted experiments on 16 state-of-the-art manifold learning algorithms that embrace two important research questions in manifold learning-based fusion of hyperspectral and PolSAR data: (1) in which domain should the data be aligned---the data domain or the manifold domain; and (2) how to make use of existing labeled data when formulating a graph to represent a manifold---supervised, semi-supervised, or unsupervised. The performance of the algorithms were evaluated via multiple accuracy metrics of land use land cover classification over two data sets. Results show that the algorithms based on manifold alignment generally outperform those based on data alignment (data concatenation). Semi-supervised manifold alignment fusion algorithms performs the best among all. Experiments using multiple classifiers show that they outperform the benchmark data alignment-based algorithms by ca. 3\% in terms of the overall classification accuracy.

elib-URL des Eintrags:https://elib.dlr.de/128102/
Dokumentart:Zeitschriftenbeitrag
Titel:A Comparative Review of Manifold Learning Techniques for Hyperspectral and Polarimetric SAR Image Fusion
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Hu, Jingliangjingliang.hu (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hong, Danfengdanfeng.hong (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Wang, Yuanyuanyuanyuan.wang (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Zhu, Xiao Xiangxiao.zhu (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:März 2019
Erschienen in:Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:11
DOI:10.3390/rs11060681
Seitenbereich:Seiten 1-28
Verlag:Multidisciplinary Digital Publishing Institute (MDPI)
ISSN:2072-4292
Status:veröffentlicht
Stichwörter:data fusion; generalized graph fusion; hyperspectral image; data alignment; locality preserving projections; manifold alignment; manifold learning; MAPPER-induced manifold alignment; polarimetric SAR; manifold alignment; MIMA
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben hochauflösende Fernerkundungsverfahren (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Hu, Jingliang
Hinterlegt am:28 Jun 2019 10:37
Letzte Änderung:31 Okt 2023 14:59

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.