elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

A state-space model for loads analysis based on tangential interpolation

Quero, David und Kaiser, Christoph und Vuillemin, Pierre und Poussot-Vassal, Charles (2019) A state-space model for loads analysis based on tangential interpolation. In: International Forum on Aeroelasticity and Structural Dynamics 2019, IFASD 2019. IFASD 2019 - International Forum on Aeroelasticity and Structural Dynamics, 10.-13. Juni 2019, Savannah, GA (USA).

[img] PDF
1MB

Kurzfassung

In this work an approach for the generation of a generalized state-space aeroservoelastic model based tangential interpolation, also known as Loewner rational interpolation, is presented. The resulting differential algebraic system (DAE) system is reduced to a set of ordinary differential equations (ODE) by residualization of the non-proper part of the Transfer function matrix. The generalized state-space is of minimal order and allows for the application of the force summation method (FSM) for the aircraft loads recovery, which shows a superior convergence when compared to the mode displacement method (MDM) for an increasing number of generalized coordinates for the cut loads recovery. Compared to the classical rational function approximation (RFA) approach, the presented method provides a minimal order realization with exact interpolation of the unsteady aerodynamic forces in tangential directions, avoiding any selection of poles (lag states). After a demonstration of the tangential interpolation techniques on the transcendental Theodorsen and Sears functions, the new approach is applied to the generation of an aeroservoelastic model for loads evaluation of the NASA Common Research model under atmospheric disturbances, showing an excellent agreement with the reference model in the frequency domain. Applications include the aerodynamic transfer function matrices generated by either potential flow or linearized computational fluid dynamics (CFD) solvers. The resulting aeroservoelastic model of minimal order is used for the design of an H-infinity-optimal controller for gust loads alleviation (GLA).

elib-URL des Eintrags:https://elib.dlr.de/128079/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:A state-space model for loads analysis based on tangential interpolation
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Quero, DavidDavid.QueroMartin (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Kaiser, ChristophChristoph.Kaiser (at) dlr.dehttps://orcid.org/0000-0001-9156-8352133666275
Vuillemin, PierreONERANICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Poussot-Vassal, CharlesONERANICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2019
Erschienen in:International Forum on Aeroelasticity and Structural Dynamics 2019, IFASD 2019
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:aeroservoelasticity, reduced order model, Loewner framework, tangential interpolation, gust load alleviation, H-infinity controller synthesis
Veranstaltungstitel:IFASD 2019 - International Forum on Aeroelasticity and Structural Dynamics
Veranstaltungsort:Savannah, GA (USA)
Veranstaltungsart:internationale Konferenz
Veranstaltungsdatum:10.-13. Juni 2019
Veranstalter :AIAA
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Flugzeuge
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L AR - Aircraft Research
DLR - Teilgebiet (Projekt, Vorhaben):L - Flugphysik (alt)
Standort: Göttingen
Institute & Einrichtungen:Institut für Aeroelastik > Aeroelastische Simulation
Hinterlegt von: Quero-Martin, David
Hinterlegt am:09 Jul 2019 10:39
Letzte Änderung:24 Apr 2023 15:02

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.