DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Towards a Lining Integrated Active Structural Acoustic Control System

Algermissen, Stephan and Misol, Malte and Kokott, Alexander and Haase, Thomas and Gonet, Kai and Lungaho, Victor (2019) Towards a Lining Integrated Active Structural Acoustic Control System. In: European Conference on Multifunctional Structures (EMuS), pp. 30-37. European Conference on Multifunctional Structures (EMuS), 11.-12. Jun. 2019, Barcelona, Spanien. ISBN 978-84-949194-4-2

Full text not available from this repository.

Official URL: http://congress.cimne.com/emus2019/frontal/doc/EbookEMuS2019.pdf


For future aircraft counter-rotating open rotor (CROR) engines are a promising technology to reduce their CO2 footprint. Since the contribution of CROR engines to the cabin noise is higher than for jet engines, new strategies for the reduction of noise transmissions for frequency bands below 500 Hz are necessary. Active structural acoustic control (ASAC) systems are capable to reduce sound transmission of lining structures in this bandwidth. Sensors measure the vibrations of the lining to estimate its sound emission into the cabin. Based on these signals a controller calculates force signals for actuators on the lining. The actuator forces change the vibration behaviour of the lining in order to reduce its sound emission. For the realization of such a system in a real aircraft, manufacturing and maintenance issues have to be addressed. Within work package 3 of the EU project ACASIAS an aircraft lining with an integrated ASAC system is developed. The size of the lining is app. 1300 x 1690 mm^2 (W x H) and it is simply curved. The radius of 2980 mm makes it relevant for a twin-aisle aircraft like the Airbus A350. The focus of research activities lies on the integration of components and the industrial manufacturing process of the lining. The components to be integrated are sensors, actuators and the corresponding wiring. A concept is proposed where each actuator and sensor is encapsulated in a kind of insert. The inserts smoothly integrate into the manufacturing process of the lining while they protect the actuators and sensors from humidity, dust, etc. The maintenance aspect is covered by the option to change each actuator or sensor upon insert level. The integrated wiring of the lining is left unaffected during an actuator or sensor replacement since connectors in each insert allow a nearly tool-free assembly/disassembly. In this paper the progress of work package 3 is presented at a detailed design review (DDR) stage. Finally, the lining will be manufactured and equipped with a full ASAC system. Experiments will be conducted in the acoustic transmission loss facility at the DLR.

Item URL in elib:https://elib.dlr.de/127884/
Document Type:Conference or Workshop Item (Speech)
Title:Towards a Lining Integrated Active Structural Acoustic Control System
AuthorsInstitution or Email of AuthorsAuthors ORCID iD
Algermissen, StephanStephan.Algermissen (at) dlr.dehttps://orcid.org/0000-0002-0507-8195
Misol, MalteMalte.Misol (at) dlr.dehttps://orcid.org/0000-0001-8056-1569
Kokott, AlexanderAlexander.Kokott (at) dlr.dehttps://orcid.org/0000-0002-0082-649X
Haase, ThomasThomas.Haase (at) dlr.dehttps://orcid.org/0000-0002-9553-9628
Date:June 2019
Journal or Publication Title:European Conference on Multifunctional Structures (EMuS)
Refereed publication:Yes
Gold Open Access:No
In ISI Web of Science:No
Page Range:pp. 30-37
Martinez, XavierCIMNE
Schippers, HarmenNLR
Keywords:smart structures, aircraft interior noise, active lining, rotor noise
Event Title:European Conference on Multifunctional Structures (EMuS)
Event Location:Barcelona, Spanien
Event Type:international Conference
Event Dates:11.-12. Jun. 2019
Organizer:International Centre for Numerical Methods in Engineering (CIMNE)
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Aeronautics
HGF - Program Themes:fixed-wing aircraft
DLR - Research area:Aeronautics
DLR - Program:L AR - Aircraft Research
DLR - Research theme (Project):L - Systems and Cabin
Location: Braunschweig
Institutes and Institutions:Institute of Composite Structures and Adaptive Systems > Adaptronics
Deposited By: Algermissen, Dr.-Ing. Stephan
Deposited On:24 Jun 2019 10:34
Last Modified:24 Jun 2019 10:34

Repository Staff Only: item control page

Help & Contact
electronic library is running on EPrints 3.3.12
Copyright © 2008-2017 German Aerospace Center (DLR). All rights reserved.