Ultsch, Johannes und Brembeck, Jonathan und de Castro, Ricardo (2019) Learning-Based Path Following Control for an Over-Actuated Robotic Vehicle. In: 9th VDI / VDE symposium on Control technology for automated driving and networked mobility, AUTOREG 2019, 2349, Seiten 25-46. VDI Verlag GmbH. AUTOREG 2019, 2019-07-02 - 2019-07-03, Mannheim, Deutschland. doi: 10.51202/9783181023495-25. ISBN 978-3-18-092349-9. ISSN 0083-5560.
PDF
1MB |
Kurzfassung
Motion control, in particular path following control (PFC), is an important function of autonomous vehicles. PFC controls the propulsion, steering and braking such that the vehicle follows a parametric path and reference velocity. For the design of traditional model-based PFC approaches a sufficiently accurate synthesis model of the vehicle has to be available in order to design a performant controller. However, constructing, parametrizing and testing these model-based PFC as well as deriving the synthesis model is known to be a time-consuming task. Recently the application of reinforcement learning (RL) methods to solve control problems without a synthesis model but based on high fidelity simulation models has gained increasing interest. In this paper we investigate the application of RL methods to solve the path following problem for DLR’s ROboMObil, an over-actuated robotic vehicle. Simulation results demonstrate that the RL-based PFC exhibits similar tracking performance as a model-based controller, executed on the path used for training. Moreover the RL-based PFC provides encouraging generalization capabilities, when facing unseen reference paths.
elib-URL des Eintrags: | https://elib.dlr.de/127819/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Learning-Based Path Following Control for an Over-Actuated Robotic Vehicle | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2019 | ||||||||||||||||
Erschienen in: | 9th VDI / VDE symposium on Control technology for automated driving and networked mobility, AUTOREG 2019 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
Band: | 2349 | ||||||||||||||||
DOI: | 10.51202/9783181023495-25 | ||||||||||||||||
Seitenbereich: | Seiten 25-46 | ||||||||||||||||
Herausgeber: |
| ||||||||||||||||
Verlag: | VDI Verlag GmbH | ||||||||||||||||
Name der Reihe: | VDI-Berichte | ||||||||||||||||
ISSN: | 0083-5560 | ||||||||||||||||
ISBN: | 978-3-18-092349-9 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Reinforcement Learning, Pfadfolgeregelung | ||||||||||||||||
Veranstaltungstitel: | AUTOREG 2019 | ||||||||||||||||
Veranstaltungsort: | Mannheim, Deutschland | ||||||||||||||||
Veranstaltungsart: | nationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 2 Juli 2019 | ||||||||||||||||
Veranstaltungsende: | 3 Juli 2019 | ||||||||||||||||
Veranstalter : | VDI Wissensforum | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben Intelligente Mobilität (alt) | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Systemdynamik und Regelungstechnik > Fahrzeug-Systemdynamik | ||||||||||||||||
Hinterlegt von: | Ultsch, Johannes | ||||||||||||||||
Hinterlegt am: | 12 Jul 2019 14:21 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:31 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags