Brembeck, Jonathan (2019) Nonlinear Constrained Moving Horizon Estimation Applied to Vehicle Position Estimation. Sensors, 19 (10), Seite 2276. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/s19102276. ISSN 1424-8220.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://www.mdpi.com/1424-8220/19/10/2276
Kurzfassung
The design of high–performance state estimators for future autonomous vehicles constitutes a challenging task, because of the rising complexity and demand for operational safety. In this application, a vehicle state observer with a focus on the estimation of the quantities position, yaw angle, velocity, and yaw rate, which are necessary for a path following control for an autonomous vehicle, is discussed. The synthesis of the vehicle’s observer model is a trade-off between modelling complexity and performance. To cope with the vehicle still stand situations, the framework provides an automatic event handling functionality. Moreover, by means of an efficient root search algorithm, map-based information on the current road boundaries can be determined. An extended moving horizon state estimation algorithm enables the incorporation of delayed low bandwidth Global Navigation Satellite System (GNSS) measurements—including out of sequence measurements—as well as the possibility to limit the vehicle position change through the knowledge of the road boundaries. Finally, different moving horizon observer configurations are assessed in a comprehensive case study, which are compared to a conventional extended Kalman filter. These rely on real-world experiment data from vehicle testdrive experiments, which show very promising results for the proposed approach.
elib-URL des Eintrags: | https://elib.dlr.de/127735/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||
Titel: | Nonlinear Constrained Moving Horizon Estimation Applied to Vehicle Position Estimation | ||||||||
Autoren: |
| ||||||||
Datum: | 2019 | ||||||||
Erschienen in: | Sensors | ||||||||
Referierte Publikation: | Ja | ||||||||
Open Access: | Ja | ||||||||
Gold Open Access: | Ja | ||||||||
In SCOPUS: | Ja | ||||||||
In ISI Web of Science: | Ja | ||||||||
Band: | 19 | ||||||||
DOI: | 10.3390/s19102276 | ||||||||
Seitenbereich: | Seite 2276 | ||||||||
Verlag: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||
ISSN: | 1424-8220 | ||||||||
Status: | veröffentlicht | ||||||||
Stichwörter: | automotive applications; nonlinear observer; Kalman filter; constrained estimation; nonlinear gradient descent search; vehicle state estimation; moving horizon estimation; GNSS; IMU; INS | ||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
HGF - Programm: | Verkehr | ||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - NGC KoFiF (alt) | ||||||||
Standort: | Oberpfaffenhofen | ||||||||
Institute & Einrichtungen: | Institut für Systemdynamik und Regelungstechnik > Fahrzeug-Systemdynamik | ||||||||
Hinterlegt von: | Klauer, Monika | ||||||||
Hinterlegt am: | 11 Jun 2019 15:44 | ||||||||
Letzte Änderung: | 30 Okt 2023 14:25 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags