Häberle, Matthias und Werner, Martin und Zhu, Xiao Xiang (2019) Building Type Classification from Social Media Texts via geo-spatial Textmining. In: 2019 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 1-4. IGARSS 2019, 2019-07-28 - 2019-08-02, Yokohama, Japan. doi: 10.1109/igarss.2019.8898836.
|
PDF
1MB |
Offizielle URL: https://igarss2019.org/
Kurzfassung
In this work, we present a model for building type classifica tion from Twitter text messages (tweets) by employing geo-spatial text mining methods. First, we apply standard text pre-processing methods and convert the tweets into sentence vectors using fastText. For classification, we apply a feedforward network with two fully connected hidden layers and feed the generated sentence vectors as linguistic features. Classification results suggest that the classes are distinguishable to a certain extent with pure text even with unbalanced class distributions and a very small sample size. However, these findings also undermine, that building type classification with pure text data is a challenging task.
| elib-URL des Eintrags: | https://elib.dlr.de/127637/ | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||
| Titel: | Building Type Classification from Social Media Texts via geo-spatial Textmining | ||||||||||||||||
| Autoren: |
| ||||||||||||||||
| Datum: | 2019 | ||||||||||||||||
| Erschienen in: | 2019 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||
| Open Access: | Ja | ||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||
| In SCOPUS: | Nein | ||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||
| DOI: | 10.1109/igarss.2019.8898836 | ||||||||||||||||
| Seitenbereich: | Seiten 1-4 | ||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||
| Stichwörter: | Urban Remote Sensing, Building Settlement Type, Classification, Natural Language Processing, Deep Learning, Word Embedding, Language, Social Media, Data Mining | ||||||||||||||||
| Veranstaltungstitel: | IGARSS 2019 | ||||||||||||||||
| Veranstaltungsort: | Yokohama, Japan | ||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
| Veranstaltungsbeginn: | 28 Juli 2019 | ||||||||||||||||
| Veranstaltungsende: | 2 August 2019 | ||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||
| Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
| Hinterlegt von: | Häberle, Matthias | ||||||||||||||||
| Hinterlegt am: | 28 Jun 2019 10:17 | ||||||||||||||||
| Letzte Änderung: | 24 Apr 2024 20:31 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags