elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Online Random Forests for Urban Area Classification from Polarimetric SAR Images

Hänsch, Ronny and Hellwich, Olaf (2019) Online Random Forests for Urban Area Classification from Polarimetric SAR Images. In: 2019 Joint Urban Remote Sensing Event, JURSE 2019, pp. 1-4. IEEE. Joint Urban Remote Sensing Event (JURSE), 2019-05-22 - 2019-05-24, Vannes, France. doi: 10.1109/JURSE.2019.8808964. ISBN 978-172810009-8. ISSN 2642-9535.

Full text not available from this repository.

Official URL: https://ieeexplore.ieee.org/abstract/document/8808964

Abstract

The growing amount of available image data renders methods unfeasible that require offline processing, i.e. the availability of all data in the memory of the computer. This paper illustrates how Random Forests can be trained by batch processing, i.e. at every iteration only a small amount of samples need to be kept in memory. The benefits of this training scheme are illustrated for the use case of urban area detection from PolSAR imagery. The achieved optimization performance is on par with using all data in the standard offline procedure.

Item URL in elib:https://elib.dlr.de/127487/
Document Type:Conference or Workshop Item (Speech)
Title:Online Random Forests for Urban Area Classification from Polarimetric SAR Images
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Hänsch, RonnyUNSPECIFIEDhttps://orcid.org/0000-0002-2936-6765UNSPECIFIED
Hellwich, OlafTechnische Universität BerlinUNSPECIFIEDUNSPECIFIED
Date:24 May 2019
Journal or Publication Title:2019 Joint Urban Remote Sensing Event, JURSE 2019
Refereed publication:Yes
Open Access:No
Gold Open Access:No
In SCOPUS:Yes
In ISI Web of Science:No
DOI:10.1109/JURSE.2019.8808964
Page Range:pp. 1-4
Publisher:IEEE
Series Name:2019 Joint Urban Remote Sensing Event (JURSE)
ISSN:2642-9535
ISBN:978-172810009-8
Status:Published
Keywords:Classification, Semantic Segmentation, Random Forest, Batch Processing, Online Learning
Event Title:Joint Urban Remote Sensing Event (JURSE)
Event Location:Vannes, France
Event Type:international Conference
Event Start Date:22 May 2019
Event End Date:24 May 2019
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Earth Observation
DLR - Research area:Raumfahrt
DLR - Program:R EO - Earth Observation
DLR - Research theme (Project):R - Vorhaben hochauflösende Fernerkundungsverfahren (old)
Location: Oberpfaffenhofen
Institutes and Institutions:Microwaves and Radar Institute > Spaceborne SAR Systems
Deposited By: Hänsch, Ronny
Deposited On:19 Jun 2019 10:24
Last Modified:24 Apr 2024 20:31

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.