elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Online Random Forests for Urban Area Classification from Polarimetric SAR Images

Hänsch, Ronny and Hellwich, Olaf (2019) Online Random Forests for Urban Area Classification from Polarimetric SAR Images. In: 2013 Joint Urban Remote Sensing Event (JURSE), pp. 1-4. IEEE. Joint Urban Remote Sensing Event (JURSE), 2019-05-22 - 2019-05-24, Vannes, France. DOI: 10.1109/JURSE.2019.8808964 ISBN 978-1-7281-0009-8 ISSN 2642-9535

Full text not available from this repository.

Official URL: https://ieeexplore.ieee.org/abstract/document/8808964

Abstract

The growing amount of available image data renders methods unfeasible that require offline processing, i.e. the availability of all data in the memory of the computer. This paper illustrates how Random Forests can be trained by batch processing, i.e. at every iteration only a small amount of samples need to be kept in memory. The benefits of this training scheme are illustrated for the use case of urban area detection from PolSAR imagery. The achieved optimization performance is on par with using all data in the standard offline procedure.

Item URL in elib:https://elib.dlr.de/127487/
Document Type:Conference or Workshop Item (Speech)
Title:Online Random Forests for Urban Area Classification from Polarimetric SAR Images
Authors:
AuthorsInstitution or Email of AuthorsAuthors ORCID iD
Hänsch, RonnyRonny.Haensch (at) dlr.dehttps://orcid.org/0000-0002-2936-6765
Hellwich, OlafTechnische Universität BerlinUNSPECIFIED
Date:24 May 2019
Journal or Publication Title:2013 Joint Urban Remote Sensing Event (JURSE)
Refereed publication:Yes
Open Access:No
Gold Open Access:No
In SCOPUS:No
In ISI Web of Science:Yes
DOI :10.1109/JURSE.2019.8808964
Page Range:pp. 1-4
Publisher:IEEE
Series Name:2019 Joint Urban Remote Sensing Event (JURSE)
ISSN:2642-9535
ISBN:978-1-7281-0009-8
Status:Published
Keywords:Classification, Semantic Segmentation, Random Forest, Batch Processing, Online Learning
Event Title:Joint Urban Remote Sensing Event (JURSE)
Event Location:Vannes, France
Event Type:international Conference
Event Dates:2019-05-22 - 2019-05-24
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Earth Observation
DLR - Research area:Raumfahrt
DLR - Program:R EO - Erdbeobachtung
DLR - Research theme (Project):R - Vorhaben hochauflösende Fernerkundungsverfahren
Location: Oberpfaffenhofen
Institutes and Institutions:Microwaves and Radar Institute > Spaceborne SAR Systems
Deposited By: Hänsch, Ronny
Deposited On:19 Jun 2019 10:24
Last Modified:12 Jan 2020 15:38

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Copyright © 2008-2017 German Aerospace Center (DLR). All rights reserved.