Hänsch, Ronny and Hellwich, Olaf (2019) Online Random Forests for Urban Area Classification from Polarimetric SAR Images. In: 2019 Joint Urban Remote Sensing Event, JURSE 2019, pp. 1-4. IEEE. Joint Urban Remote Sensing Event (JURSE), 2019-05-22 - 2019-05-24, Vannes, France. doi: 10.1109/JURSE.2019.8808964. ISBN 978-172810009-8. ISSN 2642-9535.
Full text not available from this repository.
Official URL: https://ieeexplore.ieee.org/abstract/document/8808964
Abstract
The growing amount of available image data renders methods unfeasible that require offline processing, i.e. the availability of all data in the memory of the computer. This paper illustrates how Random Forests can be trained by batch processing, i.e. at every iteration only a small amount of samples need to be kept in memory. The benefits of this training scheme are illustrated for the use case of urban area detection from PolSAR imagery. The achieved optimization performance is on par with using all data in the standard offline procedure.
Item URL in elib: | https://elib.dlr.de/127487/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||
Title: | Online Random Forests for Urban Area Classification from Polarimetric SAR Images | ||||||||||||
Authors: |
| ||||||||||||
Date: | 24 May 2019 | ||||||||||||
Journal or Publication Title: | 2019 Joint Urban Remote Sensing Event, JURSE 2019 | ||||||||||||
Refereed publication: | Yes | ||||||||||||
Open Access: | No | ||||||||||||
Gold Open Access: | No | ||||||||||||
In SCOPUS: | Yes | ||||||||||||
In ISI Web of Science: | No | ||||||||||||
DOI: | 10.1109/JURSE.2019.8808964 | ||||||||||||
Page Range: | pp. 1-4 | ||||||||||||
Publisher: | IEEE | ||||||||||||
Series Name: | 2019 Joint Urban Remote Sensing Event (JURSE) | ||||||||||||
ISSN: | 2642-9535 | ||||||||||||
ISBN: | 978-172810009-8 | ||||||||||||
Status: | Published | ||||||||||||
Keywords: | Classification, Semantic Segmentation, Random Forest, Batch Processing, Online Learning | ||||||||||||
Event Title: | Joint Urban Remote Sensing Event (JURSE) | ||||||||||||
Event Location: | Vannes, France | ||||||||||||
Event Type: | international Conference | ||||||||||||
Event Start Date: | 22 May 2019 | ||||||||||||
Event End Date: | 24 May 2019 | ||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||
HGF - Program: | Space | ||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||
DLR - Research theme (Project): | R - Vorhaben hochauflösende Fernerkundungsverfahren (old) | ||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||
Institutes and Institutions: | Microwaves and Radar Institute > Spaceborne SAR Systems | ||||||||||||
Deposited By: | Hänsch, Ronny | ||||||||||||
Deposited On: | 19 Jun 2019 10:24 | ||||||||||||
Last Modified: | 24 Apr 2024 20:31 |
Repository Staff Only: item control page