elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Multi-Domain Airflow Modeling and Ventilation Characterization Using Mobile Robots, Stationary Sensors and Machine Learning

Bennetts, Victor Hernandez und Kamarudin, Kamarulzaman und Wiedemann, Thomas und Kucner, Tomasz Piotr und Somisetty, Sai Lokesh und Lilienthal, Achim J. (2019) Multi-Domain Airflow Modeling and Ventilation Characterization Using Mobile Robots, Stationary Sensors and Machine Learning. Sensors. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/s19051119. ISSN 1424-8220.

[img] PDF - Nur DLR-intern zugänglich - Verlagsversion (veröffentlichte Fassung)
6MB

Kurzfassung

Ventilation systems are critically important components of many public buildings and workspaces. Proper ventilation is often crucial for preventing accidents, such as explosions in mines and avoiding health issues, for example, through long-term exposure to harmful respirable matter. Validation and maintenance of ventilation systems is thus of key interest for plant operators and authorities. However, methods for ventilation characterization, which allow us to monitor whether the ventilation system in place works as desired, hardly exist. This article addresses the critical challenge of ventilation characterization - measuring and modelling air flow at micro-scales - that is, creating a high-resolution model of wind speed and direction from airflow measurements. Models of the near-surface micro-scale flow fields are not only useful for ventilation characterization, but they also provide critical information for planning energy-efficient paths for aerial robots and many applications in mobile robot olfaction. In this article we propose a heterogeneous measurement system composed of static, continuously sampling sensing nodes, complemented by localized measurements, collected during occasional sensing missions with a mobile robot. We introduce a novel, data-driven, multi-domain airflow modelling algorithm that estimates (1) fields of posterior distributions over wind direction and speed (ventilation maps, spatial domain); (2) sets of ventilation calendars that capture the evolution of important airflow characteristics at measurement positions (temporal domain); and (3) a frequency domain analysis that can reveal periodic changes of airflow in the environment. The ventilation map and the ventilation calendars make use of an improved estimation pipeline that incorporates a wind sensor model and a transition model to better filter out sporadic, noisy airflow changes. These sudden changes may originate from turbulence or irregular activity in the surveyed environment and can, therefore, disturb modelling of the relevant airflow patterns. We tested the proposed multi-domain airflow modelling approach with simulated data and with experiments in a semi-controlled environment and present results that verify the accuracy of our approach and its sensitivity to different turbulence levels and other disturbances. Finally, we deployed the proposed system in two different real-world industrial environments (foundry halls) with different ventilation regimes for three weeks during full operation. Since airflow ground truth cannot be obtained, we present a qualitative discussion of the generated airflow models with plant operators, who concluded that the computed models accurately depicted the expected airflow patterns and are useful to understand how pollutants spread in the work environment. This analysis may then provide the basis for decisions about corrective actions to avoid long-term exposure of workers to harmful respirable matter.

elib-URL des Eintrags:https://elib.dlr.de/127195/
Dokumentart:Zeitschriftenbeitrag
Titel:Multi-Domain Airflow Modeling and Ventilation Characterization Using Mobile Robots, Stationary Sensors and Machine Learning
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Bennetts, Victor HernandezMobile Robotics and Olfaction Lab, Örebro Universityhttps://orcid.org/0000-0001-5061-5474NICHT SPEZIFIZIERT
Kamarudin, KamarulzamanCenter of Excellence for Advanced Sensor Technology, School of Mechatronics Engineering, Universiti Malaysia Perlishttps://orcid.org/0000-0001-7764-0821NICHT SPEZIFIZIERT
Wiedemann, ThomasThomas.Wiedemann (at) dlr.dehttps://orcid.org/0000-0002-1740-8841NICHT SPEZIFIZIERT
Kucner, Tomasz PiotrMobile Robotics and Olfaction Lab, Örebro UniversityNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Somisetty, Sai LokeshCenter of Excellence for Advanced Sensor Technology, School of Mechatronics Engineering, Universiti Malaysia PerlisNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Lilienthal, Achim J.Mobile Robotics and Olfaction Lab, Örebro Universityhttps://orcid.org/0000-0003-0217-9326NICHT SPEZIFIZIERT
Datum:5 März 2019
Erschienen in:Sensors
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.3390/s19051119
Verlag:Multidisciplinary Digital Publishing Institute (MDPI)
ISSN:1424-8220
Status:veröffentlicht
Stichwörter:airflow modeling; ventilation; mobile robotics; static sensor networks; environmental monitoring; machine learning
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Kommunikation und Navigation
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R KN - Kommunikation und Navigation
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben GNSS2/Neue Dienste und Produkte (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Kommunikation und Navigation
Institut für Kommunikation und Navigation > Nachrichtensysteme
Hinterlegt von: Wiedemann, Thomas
Hinterlegt am:21 Mai 2019 19:30
Letzte Änderung:14 Apr 2020 14:57

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.