Mazza, Antonio and Sica, Francescopaolo (2019) Deep Learning Solutions for TanDEM-X based forest classification. In: International Geoscience and Remote Sensing Symposium (IGARSS). IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2019-07-28 - 2019-08-02, Yokohama, Japan.
Full text not available from this repository.
Item URL in elib: | https://elib.dlr.de/127105/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Poster) | ||||||||||||
Title: | Deep Learning Solutions for TanDEM-X based forest classification | ||||||||||||
Authors: |
| ||||||||||||
Date: | 2019 | ||||||||||||
Journal or Publication Title: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||
Refereed publication: | Yes | ||||||||||||
Open Access: | No | ||||||||||||
Gold Open Access: | No | ||||||||||||
In SCOPUS: | Yes | ||||||||||||
In ISI Web of Science: | No | ||||||||||||
Status: | Published | ||||||||||||
Keywords: | Forest classification, InSAR, TanDEM-X, Deep Learning, Convolutional Neural Networks | ||||||||||||
Event Title: | IEEE International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||
Event Location: | Yokohama, Japan | ||||||||||||
Event Type: | international Conference | ||||||||||||
Event Start Date: | 28 July 2019 | ||||||||||||
Event End Date: | 2 August 2019 | ||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||
HGF - Program: | Space | ||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||
DLR - Research theme (Project): | R - SAR methods | ||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||
Institutes and Institutions: | Microwaves and Radar Institute > Spaceborne SAR Systems | ||||||||||||
Deposited By: | Sica, Dr. Francescopaolo | ||||||||||||
Deposited On: | 09 Apr 2019 07:30 | ||||||||||||
Last Modified: | 24 Apr 2024 20:30 |
Repository Staff Only: item control page