Viseras, Alberto und Shutin, Dmitriy und Merino, Luis (2019) Robotic Active Information Gathering for Spatial Field Reconstruction with Rapidly-Exploring Random Trees and Online Learning of Gaussian Processes. Sensors. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/s19051016. ISSN 1424-8220.
PDF
- Verlagsversion (veröffentlichte Fassung)
3MB |
Offizielle URL: https://www.mdpi.com/1424-8220/19/5/1016
Kurzfassung
Information gathering (IG) algorithms aim to intelligently select a mobile sensor actions required to efficiently obtain an accurate reconstruction of a physical process, such as an occupancy map, or a magnetic field. Many recent works have proposed algorithms for IG that employ Gaussian processes (GPs) as underlying model of the process. However, most algorithms discretize the state space, which makes them computationally intractable for robotic systems with complex dynamics. Moreover, they are not suited for online information gathering tasks as they assume prior knowledge about GP parameters. This paper presents a novel approach that tackles the two aforementioned issues. Specifically, our approach includes two intertwined steps: (i) a Rapidly-Exploring Random Tree (RRT) search that allows a robot to identify unvisited locations, and to learn the GP parameters, and (ii) an RRT*-based informative path planning that guides the robot towards those locations by maximizing the information gathered while minimizing path cost. The combination of the two steps allows an online realization of the algorithm, while eliminating the need for discretization. We demonstrate that our proposed algorithm outperforms state-of-the-art both in simulations, and in a lab experiment in which a ground-based robot explores the magnetic field intensity within an indoor environment populated with obstacles.
elib-URL des Eintrags: | https://elib.dlr.de/127043/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Robotic Active Information Gathering for Spatial Field Reconstruction with Rapidly-Exploring Random Trees and Online Learning of Gaussian Processes | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | Februar 2019 | ||||||||||||||||
Erschienen in: | Sensors | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
DOI: | 10.3390/s19051016 | ||||||||||||||||
Verlag: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||
ISSN: | 1424-8220 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | robotics; information gathering; Gaussian processes (GPs); rapidly exploring random trees (RRT) | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Kommunikation und Navigation | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R KN - Kommunikation und Navigation | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben GNSS2/Neue Dienste und Produkte (alt) | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Kommunikation und Navigation > Nachrichtensysteme | ||||||||||||||||
Hinterlegt von: | Viseras Ruiz, Alberto | ||||||||||||||||
Hinterlegt am: | 02 Apr 2019 17:27 | ||||||||||||||||
Letzte Änderung: | 31 Okt 2023 15:06 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags