Gobbi, Giorgia (2019) InSAR Parameters Retrieval using Deep Residual Learning. Master's, University of Trento.
Full text not available from this repository.
Item URL in elib: | https://elib.dlr.de/126805/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Document Type: | Thesis (Master's) | ||||||||
Title: | InSAR Parameters Retrieval using Deep Residual Learning | ||||||||
Authors: |
| ||||||||
Date: | October 2019 | ||||||||
Refereed publication: | Yes | ||||||||
Open Access: | No | ||||||||
Status: | Published | ||||||||
Keywords: | InSAR Phase estimation, Deep Learning, Convolutional Neural Network, Synthetic Aperture Radar | ||||||||
Institution: | University of Trento | ||||||||
Department: | Department of Information Engineering and Computer Science | ||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||
HGF - Program: | Space | ||||||||
HGF - Program Themes: | Earth Observation | ||||||||
DLR - Research area: | Raumfahrt | ||||||||
DLR - Program: | R EO - Earth Observation | ||||||||
DLR - Research theme (Project): | R - SAR methods | ||||||||
Location: | Oberpfaffenhofen | ||||||||
Institutes and Institutions: | Microwaves and Radar Institute > Spaceborne SAR Systems | ||||||||
Deposited By: | Sica, Dr. Francescopaolo | ||||||||
Deposited On: | 12 Mar 2019 17:06 | ||||||||
Last Modified: | 08 Jan 2020 09:56 |
Repository Staff Only: item control page