elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Status and Future of Research on Plume Induced Contamination

Grabe, Martin and Soares, Carlos E. (2019) Status and Future of Research on Plume Induced Contamination. In: Proceedings of the International Astronautical Congress, IAC. IAF. 70th International Astronautical Congress, 21.–25. Okt. 2019, Washington, USA.

[img] PDF
2MB

Official URL: https://www.iac2019.org/

Abstract

Spacecraft typically rely on chemical propulsion systems for active attitude and orbit control during cruise stage, and for entry, descent and landing on planetary surfaces. In addition to thruster performance parameters, spacecraft and mission designers must account for thruster plume impingement on adjacent surfaces (on the flight system, science instruments and on planetary surfaces). Plumes of chemical thrusters invariably interact with spacecraft surfaces, as the vacuum environment allows them to expand to well upstream the nozzle exit plane. Thruster plumes are thus a source of parasitic forces, moments, heat loads, and particularly of contamination and surface erosion. Plume contaminants may be gaseous, liquid or solid and have been demonstrated to severely degrade functional surfaces on spacecraft, affecting power and thermal budgets, as well as scientific payloads and mission design. Plume induced contamination can also impact mission science objectives since contaminants contains both organic and inorganic compounds, and current missions have highly sensitive instruments targeting detection of organics and life markers. It is thus mandatory to conduct plume contamination analyses when designing a space mission. As mission science objectives and evolving scientific instrumentation put ever more challenging constraints on contamination control, this paper reviews the existing plume induced contamination and erosion measurements on which current models rely. The data available from both, ground-based chamber tests and on-obit flight experiments, is very limited. Most of the measurements obtained in ground-based vacuum facilities were conducted in the decades of the 1970s and 1980s, in vacuum environments that did not allow for prolonged free thruster plume expansion, and most of the data was taken near plume centerline. Shuttle-borne on-orbit experiments SPIFEX and PIC provided measurements of plume induced contamination as well as droplet impact damage, but give only integral account of liquid phase contamination at coarse spatial resolution. From the reviewed data, we identify several unexplored aspects pertaining to plume induced contamination, such as the impact of thruster start-up and shutdown on the production and distribution of droplets and particulates, the spatial, temporal and size distribution of droplets and particulates in the plume during start-up, steady-state and shutdown phases, the chemical composition of plume effluents, such as partial combustion/decomposition reaction products and the previously observed non-volatile residue, and the optical properties of plume deposits. We identify the need for further development in thruster plume modeling as well as ground-based and on-orbit testing, and propose a road map to improve plume induced contamination predictive capabilities by lowering model uncertainties.

Item URL in elib:https://elib.dlr.de/126620/
Document Type:Conference or Workshop Item (Speech)
Title:Status and Future of Research on Plume Induced Contamination
Authors:
AuthorsInstitution or Email of AuthorsAuthors ORCID iD
Grabe, Martinmartin.grabe (at) dlr.deUNSPECIFIED
Soares, Carlos E.carlos.e.soares (at) nasa.jpl.govUNSPECIFIED
Date:October 2019
Journal or Publication Title:Proceedings of the International Astronautical Congress, IAC
Refereed publication:Yes
Open Access:Yes
Gold Open Access:No
In SCOPUS:Yes
In ISI Web of Science:No
Publisher:IAF
Status:Published
Keywords:thruster plume, contamination, droplets, monopropellant, bipropellant, experiments
Event Title:70th International Astronautical Congress
Event Location:Washington, USA
Event Type:international Conference
Event Dates:21.–25. Okt. 2019
Organizer:International Astronautical Federation
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Space Transport
DLR - Research area:Raumfahrt
DLR - Program:R RP - Raumtransport
DLR - Research theme (Project):R - Wiederverwendbare Raumfahrtsysteme
Location: Göttingen
Institutes and Institutions:Institute for Aerodynamics and Flow Technology > Spacecraft, GO
Deposited By: Grabe, Martin
Deposited On:13 Nov 2019 17:37
Last Modified:13 Nov 2019 17:37

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Copyright © 2008-2017 German Aerospace Center (DLR). All rights reserved.