Wurm, Michael and Stark, Thomas and Zhu, Xiao Xiang and Weigand, Matthias and Taubenböck, Hannes (2019) Semantic segmentation of slums in satellite images using transfer learning on fully convolutional neural networks. ISPRS Journal of Photogrammetry and Remote Sensing, 150, pp. 59-69. Elsevier. doi: 10.1016/j.isprsjprs.2019.02.006. ISSN 0924-2716.
PDF
- Published version
24MB |
Official URL: https://www.sciencedirect.com/science/article/pii/S0924271619300383
Abstract
Unprecedented urbanization in particular in countries of the global south result in informal urban development processes, especially in mega cities. With an estimated 1 billion slum dwellers globally, the United Nations have made the fight against poverty the number one sustainable development goal. To provide better infrastructure and thus a better life to slum dwellers, detailed information on the spatial location and size of slums is of crucial importance. In the past, remote sensing has proven to be an extremely valuable and effective tool for mapping slums. The nature of used mapping approaches by machine learning, however, made it necessary to invest a lot of effort in training the models. Recent advances in deep learning allow for transferring trained fully convolutional networks (FCN) from one data set to another. Thus, in our study we aim at analyzing transfer learning capabilities of FCNs to slum mapping in various satellite images. A model trained on very high resolution optical satellite imagery from QuickBird is transferred to Sentinel-2 and TerraSAR-X data. While free-of-charge Sentinel-2 data is widely available, its comparably lower resolution makes slum mapping a challenging task. TerraSAR-X data on the other hand, has a higher resolution and is considered a powerful data source for intra-urban structure analysis. Due to the different image characteristics of SAR compared to optical data, however, transferring the model could not improve the performance of semantic segmentation but we observe very high accuracies for mapped slums in the optical data: QuickBird image obtains 86-88% (positive prediction value and sensitivity) and a significant increase for Sentinel-2 applying transfer learning can be observed (from 38 to 55% and from 79 to 85% for PPV and sensitivity, respectively). Using transfer learning proofs extremely valuable in retrieving information on small-scaled urban structures such as slum patches even in satellite images of decametric resolution.
Item URL in elib: | https://elib.dlr.de/126606/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||
Title: | Semantic segmentation of slums in satellite images using transfer learning on fully convolutional neural networks | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | April 2019 | ||||||||||||||||||||||||
Journal or Publication Title: | ISPRS Journal of Photogrammetry and Remote Sensing | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||
Volume: | 150 | ||||||||||||||||||||||||
DOI: | 10.1016/j.isprsjprs.2019.02.006 | ||||||||||||||||||||||||
Page Range: | pp. 59-69 | ||||||||||||||||||||||||
Publisher: | Elsevier | ||||||||||||||||||||||||
ISSN: | 0924-2716 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | Slums; FCN; Convolutional neural networks; Deep learning; Transfer learning | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Remote Sensing and Geo Research | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | German Remote Sensing Data Center > Geo Risks and Civil Security | ||||||||||||||||||||||||
Deposited By: | Wurm, Michael | ||||||||||||||||||||||||
Deposited On: | 11 Mar 2019 12:36 | ||||||||||||||||||||||||
Last Modified: | 31 Oct 2023 14:52 |
Repository Staff Only: item control page