elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Combustion modeling in solid rocket motor plumes

Ecker, Tobias und Karl, Sebastian und Hannemann, Klaus (2019) Combustion modeling in solid rocket motor plumes. In: 8th European Conference for Aeronautics and Space Sciences 2019. 8th European Conference for Aeronautics and Space Sciences 2019, 2019-07-01 - 2019-07-04, Madrid, Spanien.

[img] PDF
4MB

Offizielle URL: http://www.eucass2019.eu/

Kurzfassung

Plumes emanating from solid rocket motors (SRM) exhibit flow statistics strongly influenced by complex hydrogen/oxygen/chlorine chemistry. These after burning reactions within the plume have a significant impact onto the infrared (IR) irradiance signature, as well as on the chemical erosion of any active or passive mechanical steering system exposed to the reactive motor plume. As SRM combustion chambers operate at oxidizer-fuel ratios considerably less than stoichiometric, afterburning within the plume shear layer occurs. Asides from the intermediate thermochemical loads of the plume on the launch vehicle, the resulting plume exhaust gases of Ammonium perchlorate (AP) based SRM may also have an impact on ozone layer depletion1,2 in the atmosphere and the biosphere of the launch site.3 Within this study we provide an overview on the currently available combustion mechanism and evaluate their applicability to SRM plume modeling. For a preliminary evaluation, the performance of the considered mechanisms is evaluated using a constant volume reactor. Based on the results an improved 28 reaction skeletal kinetic model is proposed and validated against detailed mechanisms in constant volume reactor test cases and a counter-flowing diffusion flame. Subsequently, selected mechanisms are applied in Reynolds-averaged Navier-Stokes CFD calculations of a small scale AP/HTPB SRM plume test case. From the evaluation of the plume thermochemistry it can be shown that the proposed model offers improved performance at lower computational costs. The results of this study offer a relevant evaluation of the performance of current SRM finite rate chemistry models and their impact on flowfield characteristics and are helpful for future scale-resolved simulations of multispecies, reactive solid-rocket motor plumes.

elib-URL des Eintrags:https://elib.dlr.de/126478/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Combustion modeling in solid rocket motor plumes
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Ecker, TobiasTobias.Ecker (at) dlr.dehttps://orcid.org/0000-0001-7134-1185NICHT SPEZIFIZIERT
Karl, SebastianSebastian.Karl (at) dlr.dehttps://orcid.org/0000-0002-5558-6673NICHT SPEZIFIZIERT
Hannemann, Klausklaus.hannemann (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Juli 2019
Erschienen in:8th European Conference for Aeronautics and Space Sciences 2019
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:solid rocket combustion, SRM, plume
Veranstaltungstitel:8th European Conference for Aeronautics and Space Sciences 2019
Veranstaltungsort:Madrid, Spanien
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:1 Juli 2019
Veranstaltungsende:4 Juli 2019
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Raumtransport
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R RP - Raumtransport
DLR - Teilgebiet (Projekt, Vorhaben):Projekt ATEK (alt), R - Raumfahrzeugsysteme - Numerische Verfahren und Simulation (alt)
Standort: Göttingen
Institute & Einrichtungen:Institut für Aerodynamik und Strömungstechnik > Raumfahrzeuge, GO
Hinterlegt von: Ecker, Tobias
Hinterlegt am:18 Jul 2019 16:01
Letzte Änderung:24 Apr 2024 20:30

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.