Bollt, Erik M. und Sun, Jie und Runge, Jakob (2018) Introduction to Focus Issue: Causation inference and information flow in dynamical systems: Theory and applications. Chaos, 28 (7), 075201. American Institute of Physics (AIP). doi: 10.1063/1.5046848. ISSN 1054-1500.
PDF
311kB |
Offizielle URL: https://doi.org/10.1063/1.5046848
Kurzfassung
Questions of causation are foundational across science and often relate further to problems of control, policy decisions, and forecasts. In nonlinear dynamics and complex systems science, causation inference and information flow are closely related concepts, whereby information or knowledge of certain states can be thought of as coupling influence onto the future states of other processes in a complex system. While causation inference and information flow are by now classical topics, incorporating methods from statistics and time series analysis, information theory, dynamical systems, and statistical mechanics, to name a few, there remain important advancements in continuing to strengthen the theory, and pushing the context of applications, especially with the ever-increasing abundance of data collected across many fields and systems. This Focus Issue considers different aspects of these questions, both in terms of founding theory and several topical applications.
elib-URL des Eintrags: | https://elib.dlr.de/126422/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Introduction to Focus Issue: Causation inference and information flow in dynamical systems: Theory and applications | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2018 | ||||||||||||||||
Erschienen in: | Chaos | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 28 | ||||||||||||||||
DOI: | 10.1063/1.5046848 | ||||||||||||||||
Seitenbereich: | 075201 | ||||||||||||||||
Verlag: | American Institute of Physics (AIP) | ||||||||||||||||
ISSN: | 1054-1500 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | causal inference, information theory | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R - keine Zuordnung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - keine Zuordnung | ||||||||||||||||
Standort: | Jena | ||||||||||||||||
Institute & Einrichtungen: | Institut für Datenwissenschaften > Datenmanagement und Analyse | ||||||||||||||||
Hinterlegt von: | Runge, Jakob | ||||||||||||||||
Hinterlegt am: | 08 Feb 2019 08:11 | ||||||||||||||||
Letzte Änderung: | 13 Jun 2023 14:42 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags