elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Recurrently exploring class-wise attention in a hybrid convolutional and bidirectional LSTM network for multi-label aerial image classification

Hua, Yuansheng und Mou, LiChao und Zhu, Xiao Xiang (2019) Recurrently exploring class-wise attention in a hybrid convolutional and bidirectional LSTM network for multi-label aerial image classification. ISPRS Journal of Photogrammetry and Remote Sensing, 149, Seiten 188-199. Elsevier. doi: 10.1016/j.isprsjprs.2019.01.015. ISSN 0924-2716.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
16MB

Offizielle URL: https://authors.elsevier.com/c/1YWFC3I9x1YrkJ

Kurzfassung

Aerial image classification is of great significance in the remote sensing community, and many researches have been conducted over the past few years. Among these studies, most of them focus on categorizing an image into one semantic label, while in the real world, an aerial image is often associated with multiple labels, e.g., multiple object-level labels in our case. Besides, a comprehensive picture of present objects in a given high-resolution aerial image can provide a more in-depth understanding of the studied region. For these reasons, aerial image multi-label classification has been attracting increasing attention. However, one common limitation shared by existing methods in the community is that the co-occurrence relationship of various classes, so-called class dependency, is underexplored and leads to an inconsiderate decision. In this paper, we propose a novel end-to-end network, namely class-wise attention-based convolutional and bidirectional LSTM network (CA-Conv-BiLSTM), for this task. The proposed network consists of three indispensable components: (1) a feature extraction module, (2) a class attention learning layer, and (3) a bidirectional LSTM-based sub-network. Particularly, the feature extraction module is designed for extracting fine-grained semantic feature maps, while the class attention learning layer aims at capturing discriminative class-specific features. As the most important part, the bidirectional LSTM-based sub-network models the underlying class dependency in both directions and produce structured multiple object labels. Experimental results on UCM multi-label dataset and DFC15 multi-label dataset validate the effectiveness of our model quantitatively and qualitatively.

elib-URL des Eintrags:https://elib.dlr.de/126414/
Dokumentart:Zeitschriftenbeitrag
Titel:Recurrently exploring class-wise attention in a hybrid convolutional and bidirectional LSTM network for multi-label aerial image classification
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Hua, YuanshengYuansheng.Hua (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Mou, LiChaoLiChao.Mou (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Zhu, Xiao Xiangxiaoxiang.zhu (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:März 2019
Erschienen in:ISPRS Journal of Photogrammetry and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:149
DOI:10.1016/j.isprsjprs.2019.01.015
Seitenbereich:Seiten 188-199
Verlag:Elsevier
ISSN:0924-2716
Status:veröffentlicht
Stichwörter:Multi-label classification High-resolution aerial image Convolutional Neural Network (CNN) l Class Attention Learning Bidirectional Long Short-Term Memory (BiLSTM) Class dependency
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Künstliche Intelligenz
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Hua, Yuansheng
Hinterlegt am:07 Feb 2019 10:48
Letzte Änderung:31 Okt 2023 14:58

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.