elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Optimization of cleaning strategies based on ANN algorithms assessing the benefit of soiling rate forecasts

Terhag, Felix und Wolfertstetter, Fabian und Wilbert, Stefan und Schaudt, Oliver und Hirsch, Tobias (2019) Optimization of cleaning strategies based on ANN algorithms assessing the benefit of soiling rate forecasts. In: 24th SolarPACES International Conference on Concentrating Solar Power and Chemical Energy Systems, SolarPACES 2018, 2126 (220005), Seiten 1-10. AIP Publishing. SolarPACES, 2018-10-02 - 2018-10-05, Casablanca, Morocco. doi: 10.1063/1.5117764. ISSN 0094-243X.

[img] PDF
1MB
[img] PDF
732kB

Offizielle URL: https://aip.scitation.org/doi/abs/10.1063/1.5117764

Kurzfassung

Soiling puts operators of solar power plants before the challenge of finding the right strategy for the cleaning of their solar fields. The trade-off between a low cleanliness and thus low revenues on the one hand and elevated cleaning costs and high field efficiency on the other hand has to be met. In this study we address this problem using a reinforced learning algorithm. Reinforced learning is a trial and error based learning process based on a scalar reward. The algorithms improve with an increasing number of training runs, each performed on a different one-year data set. The reward being the profit of the CSP project. In order to prevent overfitting to a special case, the training data has to be sufficiently large. To increase our 5 year soiling-rate and 25 year meteorological measurement data set from CIEMAT’s Plataforma Solar de Almeria (PSA). We first present a method to create artificial long term data sets based on These measurements that are representative of the sites’ weather conditions. With the extended datasets we are able to train the algorithm sufficiently before testing it on the validation dataset. The algorithm is given the daily choice to deploy up to two cleaning units in day and/or night shifts. In a second step, it is given soiling rate forecasts with different forecast horizons. At PSA our trained algorithm can increase a project’s profit by 1.28 % compared to a reference constant cleaning frequency (RPI) if only the current cleanliness of the solar field is known. If it is given a one day soiling-rate forecast the profit can be increased by 1.33 %. A three day soiling-rate-forecast can increase the profit by 1.37 %. An extended forecast horizon does not seem to increase the RPI further. For sites with higher dust loads than PSA the RPI is expected to be significantly higher than at PSA. Reinforced learning in combination with the data extension algorithm can be a useful method to increase a CSP project’s profit over its lifetime.

elib-URL des Eintrags:https://elib.dlr.de/125719/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Optimization of cleaning strategies based on ANN algorithms assessing the benefit of soiling rate forecasts
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Terhag, FelixSF-QLFNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Wolfertstetter, Fabianfabian.wolfertstetter (at) dlr.dehttps://orcid.org/0000-0003-4323-8433NICHT SPEZIFIZIERT
Wilbert, StefanStefan.Wilbert (at) dlr.dehttps://orcid.org/0000-0003-3573-3004NICHT SPEZIFIZIERT
Schaudt, OliverNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hirsch, Tobiastobias.hirsch (at) dlr.dehttps://orcid.org/0000-0003-0063-0128NICHT SPEZIFIZIERT
Datum:25 Juli 2019
Erschienen in:24th SolarPACES International Conference on Concentrating Solar Power and Chemical Energy Systems, SolarPACES 2018
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
Band:2126
DOI:10.1063/1.5117764
Seitenbereich:Seiten 1-10
Verlag:AIP Publishing
Name der Reihe:AIP Conference Proceedings
ISSN:0094-243X
Status:veröffentlicht
Stichwörter:cleaning optimization, reinforced learning, ANN, soiling, CSP, parabolic trough
Veranstaltungstitel:SolarPACES
Veranstaltungsort:Casablanca, Morocco
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:2 Oktober 2018
Veranstaltungsende:5 Oktober 2018
Veranstalter :SolarPACES
HGF - Forschungsbereich:Energie
HGF - Programm:Erneuerbare Energie
HGF - Programmthema:Konzentrierende solarthermische Technologien
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E SW - Solar- und Windenergie
DLR - Teilgebiet (Projekt, Vorhaben):E - Einfluss von Wüstenbedingungen (alt)
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Solarforschung > Qualifizierung
Hinterlegt von: Kruschinski, Anja
Hinterlegt am:08 Jan 2019 13:03
Letzte Änderung:24 Apr 2024 20:29

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.