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• Introduction  
• Soiling related measurements 
• Solar field model and comparison parameter 
• Reinforced learning algorithms  
• Creation of synthetic data series 
• Performance of ANN strategies  

 

Outline  
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• Cleaning operators have to find the best 
trade-off between reduced cleaning costs 
and increased optical solar field efficiency 

• Cleaning performance has to be quantified 
financially  

• Time resolved analysis and realistic soiling 
rate dataset is crucial  
 
 

Cleaning and soiling 
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Soiled trough at PSA 



Soiling measurement 
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• TraCS instrument measures 
         Cleanliness = ρsoiled / ρclean   
• 5 years of soiling rate data at PSA 
• >28 years of irradiance and weather data 

for yield calculations 
 
 Tracking Cleanliness Sensor – TraCS - working principle 

TraCS 

Wolfertstetter, F., Pottler, K., Alami, A., Mezrhab, A., & Pitz-Paal, R. (2012). A novel method for automatic real-time monitoring of mirror 
soiling rates. SolarPACES 2012. 
Wolfertstetter, F.: Effects of soiling on concentrating solar power plants. PhD thesis, Technische Hochschule (RWTH) Aachen, 2016 
 

Soiling rate data from PSA and Missour, Morocco 2016 



• Solar field model tracks cleaning vehicles and each troughs cleanliness 
• Assumption: all troughs soil with same soiling rate 
• Output: net profit = project‘s profit – cleaning cost  

 

Cleaning optimization: solar field model 
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• 50 MW plant with 7.5 h storage 
• Water and brush based cleaning vehicles 
• Collect cleaning related technical and 

financial parameters  
• Cleaning costs: 

• Labor, water, fuel, depreciation of 
cleaning vehicles 

 
 

Cleaning optimization: technical and financial inputs 
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Wolfertstetter, F., Wilbert, S., Dersch, J., Dieckmann, S., Pitz-Paal, R., & Ghennioui, A. (2018). Integration of Soiling-Rate Measurements  
and Cleaning Strategies in Yield Analysis of Parabolic Trough Plants. Journal of Solar Energy Engineering, 140(4), 041008. 



• A reference cleaning strategy is chosen as a reference point: constant, daily 
cleaning in one shift with 1 vehicle 

• Cleaning policies are compared to reference by relative profit increase (RPI) 
• Previous study: condition based cleaning policies: 

• Vary number of vehicles and cleanliness threshold 

Cleaning optimization: policy comparison 
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Can cleaning strategy be  
improved by reinforced  
Learning and forecast? 

Wolfertstetter, F., Wilbert, S., Dersch, J., Dieckmann, S., Pitz-Paal, R., & Ghennioui, A. (2018). Integration of Soiling-Rate Measurements  
and Cleaning Strategies in Yield Analysis of Parabolic Trough Plants. Journal of Solar Energy Engineering, 140(4), 041008. 



• Agent takes action depending on the environment 

Artificial Neural Networks: Reinforced learning 
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• Agent takes action depending on the environment 
• Actions influence environment and creates a reward feedback  
• Learning process: Agent is updated after each run => negative or positive 

feedback on current policy according to reward 
• The fully trained agent can be applied to any new environment to deliver high 

reward 
 
 
 

Artificial Neural Networks: Reinforced learning 

DLR.de  •  Chart 9 

Agent 

Environment  

action 
    t 

state 
   t 

reward 
     t 

reward 
     t+1 

State 
    t+1 



• agent = cleaning policy 
• action = daily cleaning decision  

• Clean with 0 – 2 vehicles in 1 or 2 shifts each 
• state = solar field cleanliness, weather data, optional: forecast for irradiance 

class and high/low soiling rate  
• Reward = RPI 

 
 

 
 

Artificial Neural Networks: Reinforced learning 
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• Each training run involves full simulation year, i.e. 365 states and cleaning 
decisions 

• Option to provide agent with soiling rate and weather forecast information 
• Training of reinforced learning agent requires a large amount of data  
• 5 years of soiling data and 28 years of weather data is not enough for 

reinforced learning 
=> need to increase database by synthetic data extension 

 
 
 

Reinforced Learning: Reward and training 
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• Measurement days are 
classified for DNI 
variability (clear sky, 
intermittent, cloudy) 1 

• Transition probabilities 
are determined 

• Original measurement 
days are drawn from a 14 
day time window according 
to transition probabilities 

• >5,000 data years are 
created 
 

Synthetic data extension: weather 
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Average DNI variability class distribution over 28 years at PSA 

 
 

1 M. Schroedter-Homscheidt, M. Kosmale, S. Jung, and J. Kleissl, “Classifying ground-measured 1 minute temporal variability  
within hourly intervals for direct normal irradiances,” Meteorologische Zeitschrift, 2018. 
 



• Soiling rate is drawn according to 
probability for each variability class 

• Rain cleaning action quantified in 
cleaning efficiency: how much of the 
existing dirt is removed by rain 
 

Synthetic data extension: soiling  
rate and natural cleaning 
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Soiling rate histogram for clear sky days 
at PSA 
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Soiling rate in 1/d 

Soiling rate histograms for PSA and  
Missour, Morocco and all classes 



• Agent begins with random strategy 
• Agent is updated after each training 

year according to reward 
• Repeat 10 times on each test year and 

15 different years (training run) 
• Validation set: fix dataset of 20 years 
• Agent is tested on validation set after 

each training run   
• RPI increases with training run 
• Exit condition: no RPI-improvement in 

the last 20 training runs  
• Resulting agent is the final cleaning 

policy 

Learning progress 
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• Reinforcement learning strategy nearly doubles the RPI of the condition based 
strategy if no forecast is provided 

• Reinforcement learning strategies achieve RPI of 1.3 % if no forecast is 
provided 

• RPI of 1.4% with forecast information 
 

• Note: PSA is not a heavy soiling location 
• Much higher results are expected for regions with higher dust loads 

 
 

Application of soiling forecast in cleaning policy: 
results 
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• Collect cleaning related technical 
parameters  

• Model field cleanliness tracking each 
cleaning vehicle in daily time 
resolution 

• Soiling rate reduces cleanliness 
• Calculate power plant performance 

using greenius software 
• Subtract spendings for cleaning 
• Compare to reference strategy 

 
• Comparison parameter: relative profit 

increase (RPI) 
 

Evolution of soiling and cleaning in solar field 
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Wolfertstetter, F., Wilbert, S., Dersch, J., Dieckmann, S., Pitz-Paal, R., & Ghennioui, A. (2018). Integration of Soiling-Rate Measurements  
and Cleaning Strategies in Yield Analysis of Parabolic Trough Plants. Journal of Solar Energy Engineering, 140(4), 041008. 



• Solar field model developed: add on to yield analysis software such as greenius 
• Data extension algorithm developed for training of reinforcement learning 

algorithms 
• Reinforcement learning applied to cleaning optimization 
• Reinforcement learning agent nearly doubles the profit increase compared to 

condition based cleaning strategies 
• Inclusion of forecast for high/low soiling rate and irradiance class can further 

increase the profit 
• Better results expected for sites with higher soiling load 

 

Conclusion  
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Thank you for your attention 
 
fabian.wolfertstetter@dlr.de 
 
Recommended literature on soiling model:  
http://wascop.eu/wp-content/uploads/2018/06/WASCOP_deliverable_3.2_final_plainText.pdf 
 
Upcoming talks at solarPACES:  
Thursday, 13:45 water consumption management session : cleaning strategy optimization 
Friday 08:50  solar resource assessment: soiling model 
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