elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Protection of cyanobacterial carotenoids’ Raman signatures by Martian mineral analogues after high dose gamma irradiation

Baque, Mickael and Böttger, Ute and Leya, T. and Moeller, Ralf and de Vera, Jean Pierre Paul (2018) Protection of cyanobacterial carotenoids’ Raman signatures by Martian mineral analogues after high dose gamma irradiation. XIII GeoRaman International Conference, 10-14 June 2018, Catania, Italy.

[img] PDF
253kB

Abstract

The future search-for-life missions to Mars - ESA/Roscosmos’s ExoMars2020 and NASA’s Mars2020 rovers - will carry Raman spectrometers for in situ analysis of extraterrestrial material for the first time1,2. The question remains whether signs of extinct or extant life could be detected by this method. From our terrestrial examples, carotenoids (e.g. serving in cyanobacteria as accessory and photoprotective pigments) have been extensively used as biosignature models due to their stability and easy identification by Raman spectroscopy with a 532nm excitation wavelength3. Evaluating the detection limit of pigments under simulated extraterrestrial conditions is beneficial for the success of future life-detection missions. Ionizing radiation can be considered the most deleterious factor for the long term preservation of potential biomarkers on Mars4. Here, we report on the preservation potential of Raman signatures in the Antarctic cyanobacterium Nostoc sp. strain CCCryo 231–06 after high doses of gamma irradiation performed in the frame of the STARLIFE project5. The carotenoids' signals usually dominate the Raman spectra at 532nm excitation wavelength due to resonance effects. But comparing their distribution and quantifying their preservation is still problematic in natural samples. To standardize the analyses, we successfully applied Raman mapping and signal-to-noise ratios (SNR) masks to quantify the effects of irradiation. The typical in vivo Raman signatures of carotenoids could be detected even after exposure to up to 56 kGy with significant deterioration in terms of signal coverage and SNR. However, for colonies embedded in two different Martian mineral analogues (phyllosilicatic and sulfatic Mars regolith simulants), the carotenoids' signatures remained detectable even after the highest dose of γ-rays (117kGy) tested in this study, with no significant effect on signal coverage or SNRs. Carotenoids proved again their scientific value as model biosignatures for future life detection missions on Mars. Data gathered during these ground-based irradiation experiments contribute to interpret results from space experiments (such as BIOMEX6) and will guide our search for life on Mars and other bodies of interest.

Item URL in elib:https://elib.dlr.de/125694/
Document Type:Conference or Workshop Item (Speech)
Title:Protection of cyanobacterial carotenoids’ Raman signatures by Martian mineral analogues after high dose gamma irradiation
Authors:
AuthorsInstitution or Email of AuthorsAuthors ORCID iD
Baque, MickaelMickael.Baque (at) dlr.dehttps://orcid.org/0000-0002-6696-6030
Böttger, UteUte.Boettger (at) dlr.deUNSPECIFIED
Leya, T.Fraunhofer IZI-BB, Potsdam, GermanyUNSPECIFIED
Moeller, Ralfradiation biology department, institute of aerospace medicine, german aerospace center (dlr), cologne, germany; ralf.moeller (at) dlr.dehttps://orcid.org/0000-0002-2371-0676
de Vera, Jean Pierre Pauljean-pierre.devera (at) dlr.deUNSPECIFIED
Date:2018
Refereed publication:No
Open Access:Yes
Gold Open Access:No
In SCOPUS:No
In ISI Web of Science:No
Status:Published
Keywords:Raman spectroscopy, cyanobacteria, gamma radiation, biosignatures, Mars
Event Title:XIII GeoRaman International Conference
Event Location:Catania, Italy
Event Type:international Conference
Event Dates:10-14 June 2018
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Space Science and Exploration
DLR - Research area:Raumfahrt
DLR - Program:R EW - Erforschung des Weltraums
DLR - Research theme (Project):R - Vorhaben Planetary Evolution and Life
Location: Berlin-Adlershof , Köln-Porz
Institutes and Institutions:Institute of Planetary Research > Leitungsbereich PF
Institute of Aerospace Medicine > Radiation Biology
Institute of Optical Sensor Systems > Terahertz and Laser Spectroscopy
Deposited By: Baque, Dr. Mickael
Deposited On:08 Jan 2019 09:00
Last Modified:31 Jul 2019 20:23

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Copyright © 2008-2017 German Aerospace Center (DLR). All rights reserved.