elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Machine Learning Approach to Deconvolution of Thermal Infrared (TIR) Spectrum of Mercury Supporting MERTIS Onboard ESA/JAXA BepiColombo

Varatharajan, Indhu and D'Amore, Mario and Maturilli, Alessandro and Helbert, Jörn and Hiesinger, H. (2018) Machine Learning Approach to Deconvolution of Thermal Infrared (TIR) Spectrum of Mercury Supporting MERTIS Onboard ESA/JAXA BepiColombo. Lunar and Planetary Institute. Planetary Science Informatics and Data Analytics Conference, 24-26 April, St. Louis, Missouri, USA.

[img] PDF
226kB

Official URL: https://psida.rsl.wustl.edu/

Abstract

Spectroscopy is the powerful tech- nique to study the surface mineralogy of any planetary body from its orbit. Spectrometers with wide spectral range, greater spectral and spatial resolution with re- peated orbital coverage are helping us to map the sur- face mineralogy of planets in greater detail. Various spectral ranges tell different stories and properties of the surface we look at. For eg., VIS-IR spectroscopy for a rocky planet would tell us about the distribution of Fe,Ti,Mg,Ca rich minerals for both its igneous and sedimentary phases whereas thermal IR spectroscopy reveals the Si-O abundance on the bulk mineralogy of the pixel we look at. By carefully understanding the spectral behavior of various planetary analogues in laboratory experiments at the planetary surface and environmental conditions, one can map the mineral abundance and distribution globally from orbit.

Item URL in elib:https://elib.dlr.de/125535/
Document Type:Conference or Workshop Item (Keynote)
Title:Machine Learning Approach to Deconvolution of Thermal Infrared (TIR) Spectrum of Mercury Supporting MERTIS Onboard ESA/JAXA BepiColombo
Authors:
AuthorsInstitution or Email of AuthorsAuthors ORCID iD
Varatharajan, IndhuIndhu.Varatharajan (at) dlr.deUNSPECIFIED
D'Amore, MarioMario.DAmore (at) dlr.dehttps://orcid.org/0000-0001-9325-6889
Maturilli, AlessandroAlessandro.Maturilli (at) dlr.deUNSPECIFIED
Helbert, JörnJoern.Helbert (at) dlr.dehttps://orcid.org/0000-0001-5346-9505
Hiesinger, H.Westfälische Wilhelms-Universität MünsterUNSPECIFIED
Date:2018
Refereed publication:No
Open Access:Yes
Gold Open Access:No
In SCOPUS:No
In ISI Web of Science:No
Page Range:p. 6015
Publisher:Lunar and Planetary Institute
Status:Published
Keywords:Machine Learning Approach, Deconvolution, Thermal Infrared, Mercury, MERTIS, BepiColombo
Event Title:Planetary Science Informatics and Data Analytics Conference
Event Location:St. Louis, Missouri, USA
Event Type:international Conference
Event Dates:24-26 April
Organizer:Lunar and Planetary Institute
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Space Science and Exploration
DLR - Research area:Raumfahrt
DLR - Program:R EW - Erforschung des Weltraums
DLR - Research theme (Project):Projekt BepiColombo MERTIS und BELA
Location: Berlin-Adlershof
Institutes and Institutions:Institute of Planetary Research > Leitungsbereich PF
Deposited By: Amore, Dr. Mario
Deposited On:03 Jan 2019 13:22
Last Modified:31 Jul 2019 20:23

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Copyright © 2008-2017 German Aerospace Center (DLR). All rights reserved.