Varatharajan, Indhu und D'Amore, Mario und Maturilli, Alessandro und Helbert, Jörn und Hiesinger, H. (2018) Machine Learning Approach to Deconvolution of Thermal Infrared (TIR) Spectrum of Mercury Supporting MERTIS Onboard ESA/JAXA BepiColombo. Lunar and Planetary Institute. Planetary Science Informatics and Data Analytics Conference, 2018-04-24 - 2018-04-26, St. Louis, Missouri, USA.
PDF
226kB |
Offizielle URL: https://psida.rsl.wustl.edu/
Kurzfassung
Spectroscopy is the powerful tech- nique to study the surface mineralogy of any planetary body from its orbit. Spectrometers with wide spectral range, greater spectral and spatial resolution with re- peated orbital coverage are helping us to map the sur- face mineralogy of planets in greater detail. Various spectral ranges tell different stories and properties of the surface we look at. For eg., VIS-IR spectroscopy for a rocky planet would tell us about the distribution of Fe,Ti,Mg,Ca rich minerals for both its igneous and sedimentary phases whereas thermal IR spectroscopy reveals the Si-O abundance on the bulk mineralogy of the pixel we look at. By carefully understanding the spectral behavior of various planetary analogues in laboratory experiments at the planetary surface and environmental conditions, one can map the mineral abundance and distribution globally from orbit.
elib-URL des Eintrags: | https://elib.dlr.de/125535/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Programmrede) | ||||||||||||||||||||||||
Titel: | Machine Learning Approach to Deconvolution of Thermal Infrared (TIR) Spectrum of Mercury Supporting MERTIS Onboard ESA/JAXA BepiColombo | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 2018 | ||||||||||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
Seitenbereich: | Seite 6015 | ||||||||||||||||||||||||
Verlag: | Lunar and Planetary Institute | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Machine Learning Approach, Deconvolution, Thermal Infrared, Mercury, MERTIS, BepiColombo | ||||||||||||||||||||||||
Veranstaltungstitel: | Planetary Science Informatics and Data Analytics Conference | ||||||||||||||||||||||||
Veranstaltungsort: | St. Louis, Missouri, USA | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 24 April 2018 | ||||||||||||||||||||||||
Veranstaltungsende: | 26 April 2018 | ||||||||||||||||||||||||
Veranstalter : | Lunar and Planetary Institute | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erforschung des Weltraums | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EW - Erforschung des Weltraums | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Projekt BepiColombo - MERTIS und BELA | ||||||||||||||||||||||||
Standort: | Berlin-Adlershof | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Planetenforschung > Leitungsbereich PF | ||||||||||||||||||||||||
Hinterlegt von: | Amore, Dr. Mario | ||||||||||||||||||||||||
Hinterlegt am: | 03 Jan 2019 13:22 | ||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:29 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags