Datcu, Mihai und Xu, Feng (2018) Earth Observation Big Data Intelligence: theory and practice of deep learning and big data mining. IGARSS 2018, 2018-07-22 - 2018-07-27, Valencia, Spanien.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://www.igarss2018.org/Tutorials.asp
Kurzfassung
In the big data era of earth observation, deep learning and other data mining technologies become critical to successful end applications. Over the past several years, there has been exponentially increasing interests related to deep learning techniques applied to remote sensing including not only hyperspectral imagery but also synthetic aperture radar (SAR) imagery. This tutorial has two parts. The first half introduces the basic principles of machine learning, and the evolution to deep learning paradigms. It presents the methods of stochastic variational and Bayesian inference, focusing on the methods and algorithms of deep learning generative adversarial networks. Since the data sets are organic part of the learning process, the EO dataset biases pose new challenges. The tutorial answers to open questions on relative data bias, cross-dataset generalization, for very specific EO cases as multispectral, SAR observation with a large variability of imaging parameters and semantic content. The second half introduces the theory of deep neural networks and the practices of deep learning-based remote sensing applications. It introduces the major types of deep neural networks, the backpropagation algorithms, programming toolboxes, and several examples of deep learning-based remote sensing imagery processing.
elib-URL des Eintrags: | https://elib.dlr.de/125406/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
Titel: | Earth Observation Big Data Intelligence: theory and practice of deep learning and big data mining | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | Juli 2018 | ||||||||||||
Referierte Publikation: | Nein | ||||||||||||
Open Access: | Nein | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Nein | ||||||||||||
In ISI Web of Science: | Nein | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Big data, deep learning | ||||||||||||
Veranstaltungstitel: | IGARSS 2018 | ||||||||||||
Veranstaltungsort: | Valencia, Spanien | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsbeginn: | 22 Juli 2018 | ||||||||||||
Veranstaltungsende: | 27 Juli 2018 | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||
Hinterlegt von: | Zielske, Mandy | ||||||||||||
Hinterlegt am: | 21 Dez 2018 10:24 | ||||||||||||
Letzte Änderung: | 24 Apr 2024 20:29 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags