elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

ACOUSTIC INSTALLATION EFFECTS ON AN AGILE HIGHLY SWEPT FLYING WING CONFIGURATION

Rossignol, Karl-Stéphane und Delfs, Jan Werner und Lummer, Markus (2018) ACOUSTIC INSTALLATION EFFECTS ON AN AGILE HIGHLY SWEPT FLYING WING CONFIGURATION. 67. Deutscher Luft- und Raumfahrtkongress 2018, Friedrichshafen.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Results of experimental investigations on engine noise shielding by an unmanned combat air vehicle (UCAV) are presented. The experiments were carried out in DNW-NWB acoustic wind tunnel using a newly developed laser-based pulsed sound source at the SACCON UCAV aircraft configuration. The results obtained demonstrate that the sharp-edged SACCON geometry leads to a sharply defined shadow region for wavelengths of the incident sound field which are large compared to the edges radius of curvature or thickness. In that case, sound wave diffraction through creeping waves does not play an important role, and higher levels of acoustic attenuation can be achieved. Furthermore, it was found that a positioning of the jet outlet further upstream of the aircraft’s trailing edge is beneficial, also leading to a higher acoustic attenuation. Noise generated at the inlet of the propulsion system was found to be much less attenuated compared to that generated at the outlet. This is a consequence of the position of the inlet on the symmetry plane of the model as well as to the relatively large radius of curvature of the aircraft wings leading edge. Inlet generated noise is registered, in the experiments, far downstream of the aircraft leading edge. This result emphasizes the potential necessity to achieve a clever integration of both inlet and outlet of the propulsion systems to maximize acoustic attenuation. A high noise attenuation at the outlet may potentially be cancelled out by a noisy and badly positioned inlet. A ranking of inlet vs. outlet noise could not, however, be done using the acquired database. This question remains open and will be the subject of future research. Numerical simulations of the experimental configuration were performed using DLR’s FMCAS code. The results were found to be in very good agreement with the experimental results, thus demonstrating the applicability of noise prediction methods to the problem of acoustic shielding.

elib-URL des Eintrags:https://elib.dlr.de/125137/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:ACOUSTIC INSTALLATION EFFECTS ON AN AGILE HIGHLY SWEPT FLYING WING CONFIGURATION
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Rossignol, Karl-Stéphanekarl-stephane.rossignol (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Delfs, Jan Wernerjan.delfs (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Lummer, Markusmarkus.lummer (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:September 2018
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Aeroacoustics, noise shielding, acoustic shielding, wind tunnel, experimental, Experiment, UCAV, Drohne
Veranstaltungstitel:67. Deutscher Luft- und Raumfahrtkongress 2018
Veranstaltungsort:Friedrichshafen
Veranstaltungsart:nationale Konferenz
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Flugzeuge
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L AR - Aircraft Research
DLR - Teilgebiet (Projekt, Vorhaben):L - Flugphysik (alt), L - Militärische Technologien (alt)
Standort: Braunschweig
Institute & Einrichtungen:Institut für Aerodynamik und Strömungstechnik > Technische Akustik
Hinterlegt von: Rossignol, Karl-Stephane
Hinterlegt am:14 Dez 2018 14:13
Letzte Änderung:14 Dez 2018 14:13

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.