elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Stereo Depth Estimation using Deep Learning: Leveraging Context through Multi-Task Training

True, Steffen (2018) Stereo Depth Estimation using Deep Learning: Leveraging Context through Multi-Task Training. DLR-Interner Bericht. DLR-IB-RM-OP-2018-230. Masterarbeit. Technical University of Munich. 82 S.

[img] PDF - Nur DLR-intern zugänglich
69MB

Kurzfassung

Dense depth information is vital for robotics applications to fully understand or reconstruct a 3D scene. Recent work has shown that stereo depth estimation through binocular disparity has been successfully cast a learning problem lever- aging convolutional neural networks for a constant surge in performance and accuracy. However, textureless regions, object boundaries and small details still give rise to challenges. The explicit incorporation of semantic knowledge can po- tentially mitigate this problem by providing high-level information specifically for objects and smooth regions. The proposed network architecture derives a com- mon representation for semantic segmentation and disparity estimation through multi-task learning, where the use of an auxiliary task has proven beneficial in terms of learning efficiency and prediction accuracy of the assigned tasks. The training of the disparity estimation model was enabled by synthetically generated data, whereas the resulting disparity output is tested on real images and com- pared in multiple scenarios to a state-of-the-art traditional algorithm.

elib-URL des Eintrags:https://elib.dlr.de/125041/
Dokumentart:Berichtsreihe (DLR-Interner Bericht, Masterarbeit)
Titel:Stereo Depth Estimation using Deep Learning: Leveraging Context through Multi-Task Training
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
True, SteffenSteffen.True (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:12 Dezember 2018
Referierte Publikation:Nein
Open Access:Nein
Seitenanzahl:82
Status:veröffentlicht
Stichwörter:Stereo, Depth, Disparity, Segmentation, Multi-task, Deep Learning, CNN
Institution:Technical University of Munich
Abteilung:Department of Informatics
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Technik für Raumfahrtsysteme
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R SY - Technik für Raumfahrtsysteme
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben Multisensorielle Weltmodellierung (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition
Hinterlegt von: True, Steffen
Hinterlegt am:14 Dez 2018 00:24
Letzte Änderung:06 Dez 2022 11:09

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.