elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Robust Estimation of Motion States for Free-Floating Tumbling Target Capture

Gallardo, Abril und Mishra, Hrishik und Giordano, Alessandro Massimo und Lampariello, Roberto (2018) Robust Estimation of Motion States for Free-Floating Tumbling Target Capture. In: IEEE Aerospace Conference Proceedings. 2019 IEEE Aerospace Conference, 2019-03-02 - 2019-03-09, Yellowstone Conference Center, Big Sky, Montana,. doi: 10.1109/AERO.2019.8741802. ISSN 1095-323X.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

In this paper, we propose a novel Extended Kalman Filter (EKF) to aid the capture of a free-floating tumbling satellite (Target) with a manipulator-equipped spacecraft (Servicer) in the close-range reach phase. For such a control problem, the interfacing of a fast-sampled robot controller with a slow-sampled Guidance, Navigation and Control (GNC)-bus on the spacecraft creates a down-sampling in terms of the measured state. This causes a performance loss for the robot controller. Additionally, only slow-sampled and noisy exteroceptive sensors, like a camera, which provides relative poses may be available for feedback. In order to circumvent this problem, the main objective of the proposed method is to provide fast relative state reconstruction between Target and Servicer. To this end, the proposed EKF estimates the inertial motion states of the Target and the Servicer-base at high rate using slow-sampled and noisy exteroceptive measurements, which include relative poses from cameras and absolute orientation from star/sun trackers. The state information is combined with the Inertial Measurement Unit (IMU), forward kinematics (using joint encoders) and a priori known transformations to reconstruct a fast-sampled estimate of the inertial states and hence, the relative states for control. As a robust validation, the results of 100 Monte-Carlo simulation runs are presented. Furthermore, the validity of the proposed EKF is demonstrated by driving it in closed-loop with a combined controller on a Guidance, navigation and control development environment software platform. Through these results, it is shown that the proposed EKF is robust towards camera occlusions and noise. Additionally, the proposed method also estimates the tumbling velocity of the Target for feed-forward in the control method.

elib-URL des Eintrags:https://elib.dlr.de/124894/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Robust Estimation of Motion States for Free-Floating Tumbling Target Capture
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Gallardo, AbrilAbril.PooGallardo (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Mishra, Hrishikhrishik.mishra (at) dlr.dehttps://orcid.org/0000-0002-5025-2447NICHT SPEZIFIZIERT
Giordano, Alessandro MassimoAlessandro.Giordano (at) dlr.dehttps://orcid.org/0000-0003-2291-7525NICHT SPEZIFIZIERT
Lampariello, RobertoRoberto.Lampariello (at) dlr.dehttps://orcid.org/0000-0002-8479-2900NICHT SPEZIFIZIERT
Datum:19 Oktober 2018
Erschienen in:IEEE Aerospace Conference Proceedings
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
DOI:10.1109/AERO.2019.8741802
ISSN:1095-323X
Status:veröffentlicht
Stichwörter:Kalman Filter, On-Orbit Servicing, Navigation Filter
Veranstaltungstitel:2019 IEEE Aerospace Conference
Veranstaltungsort:Yellowstone Conference Center, Big Sky, Montana,
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:2 März 2019
Veranstaltungsende:9 März 2019
Veranstalter :IEEE
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Technik für Raumfahrtsysteme
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R SY - Technik für Raumfahrtsysteme
DLR - Teilgebiet (Projekt, Vorhaben):On-Orbit Servicing (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Robotik und Mechatronik (ab 2013) > Analyse und Regelung komplexer Robotersysteme
Hinterlegt von: Mishra, Hrishik
Hinterlegt am:11 Dez 2018 23:05
Letzte Änderung:24 Apr 2024 20:28

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.