elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Assessing the stochastic error of acoustic scattering matrices using linear methods

Peerlings, Luck und Bake, Friedrich und Boij, Susann und Boden, H. (2018) Assessing the stochastic error of acoustic scattering matrices using linear methods. International Journal of Spray and Combustion Dynamics, 10 (4). Sage Publications. doi: 10.1177/1756827718789066. ISSN 1756-8277.

[img] PDF
641kB

Offizielle URL: https://journals.sagepub.com/doi/10.1177/1756827718789066

Kurzfassung

To be able to compare the measured scattering matrices with model predictions, the quality of the measurements has to be known. Uncertainty analyses are invaluable to assess and improve the quality of measurement results in terms of accuracy and precision. Linear analyses are widespread, computationally fast and give information of the contribution of each error source to the overall measurement uncertainty; however, they cannot be applied in every situation. The purpose of this study is to determine if linear methods can be used to assess the quality of acoustic scattering matrices. The uncertainty in measured scattering matrices is assessed using a linear uncertainty analysis and the results are compared against Monte-Carlo simulations. It is shown that for plane waves, a linear uncertainty analysis, applied to the wave decomposition method, gives correct results when three conditions are satisfied. For higher order mode measurements, the number of conditions that have to be satisfied increases rapidly and the linear analysis becomes an unsuitable choice to determine the uncertainty on the scattering matrix coefficients. As the linear uncertainty analysis is most suitable for the plane wave range, an alternative linear method to assess the quality of the measurements is investigated. This method, based on matrix perturbation theory, gives qualitative information in the form of partial condition numbers and the implementation is straightforward. Using the alternative method, the measurements of higher order modes are analyzed and the observed difference in the measured reflection coefficients for different excitation conditions is explained by the disparity in modal amplitudes.

elib-URL des Eintrags:https://elib.dlr.de/124568/
Dokumentart:Zeitschriftenbeitrag
Titel:Assessing the stochastic error of acoustic scattering matrices using linear methods
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Peerlings, LuckKTH Royal Institute of TechnologyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Bake, FriedrichFriedrich.Bake (at) dlr.dehttps://orcid.org/0000-0002-3235-428XNICHT SPEZIFIZIERT
Boij, SusannKTH Royal Institute of TechnologyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Boden, H.KTH, Royal Institute of Technology, Aeronautical and Vehicle EngineeringNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:26 Juli 2018
Erschienen in:International Journal of Spray and Combustion Dynamics
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:10
DOI:10.1177/1756827718789066
Verlag:Sage Publications
ISSN:1756-8277
Status:veröffentlicht
Stichwörter:Uncertainty analysis, higher order modes, sensitivity analysis, partial condition numbers, in-duct acoustics
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Antriebssysteme
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L ER - Engine Research
DLR - Teilgebiet (Projekt, Vorhaben):L - Brennkammertechnologien (alt), L - Turbinentechnologien (alt)
Standort: Berlin-Charlottenburg
Institute & Einrichtungen:Institut für Antriebstechnik > Triebwerksakustik
Hinterlegt von: Bake, Dr.-Ing. Friedrich
Hinterlegt am:10 Dez 2018 12:20
Letzte Änderung:04 Apr 2024 11:22

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.