elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

DSM-to-LoD2: Spaceborne Stereo Digital Surface Model Refinement

Bittner, Ksenia und d'Angelo, Pablo und Körner, Marco und Reinartz, Peter (2018) DSM-to-LoD2: Spaceborne Stereo Digital Surface Model Refinement. Remote Sensing, 10 (1926), Seiten 1-20. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs10121926. ISSN 2072-4292.

[img] PDF
36MB

Offizielle URL: https://www.mdpi.com/2072-4292/10/12/1926

Kurzfassung

A digital surface model (DSM) provides the geometry and structure of an urban environment with buildings being the most prominent objects in it. Built-up areas change with time due to the rapid expansion of cities. New buildings are being built, existing ones are expanded, and old buildings are torn down. As a result, 3D surface models can increase the understanding and explanation of complex urban scenarios. They are very useful in numerous fields of remote sensing applications, in tasks related to 3D reconstruction and city modeling, planning, visualization, disaster management, navigation, and decision-making, among others. DSMs are typically derived from various acquisition techniques, like photogrammetry, laser scanning, or synthetic aperture radar (SAR). The generation of DSMs from very high resolution optical stereo satellite imagery leads to high resolution DSMs which often suffer from mismatches, missing values, or blunders, resulting in coarse building shape representation. To overcome these problems, we propose a method for 3D surface model generation with refined building shapes to level of detail (LoD) 2 from stereo half-meter resolution satellite DSMs using deep learning techniques. Mainly, we train a conditional generative adversarial network (cGAN) with an objective function based on least square residuals to generate an accurate LoD2-like DSM with enhanced 3D object shapes directly from the noisy stereo DSM input. In addition, to achieve close to LoD2 shapes of buildings, we introduce a new approach to generate an artificial DSM with accurate and realistic building geometries from city geography markup language (CityGML) data, on which we later perform a training of the proposed cGAN architecture. The experimental results demonstrate the strong potential to create large-scale remote sensing elevation models where the buildings exhibit better-quality shapes and roof forms than just using the matching process. Moreover, the developed model is successfully applied to a different city that is unseen during the training to show its generalization capacity.

elib-URL des Eintrags:https://elib.dlr.de/124505/
Dokumentart:Zeitschriftenbeitrag
Titel:DSM-to-LoD2: Spaceborne Stereo Digital Surface Model Refinement
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Bittner, KseniaKsenia.Bittner (at) dlr.dehttps://orcid.org/0000-0002-4048-3583NICHT SPEZIFIZIERT
d'Angelo, Pablopablo.angelo (at) dlr.dehttps://orcid.org/0000-0001-8541-3856NICHT SPEZIFIZIERT
Körner, Marcomarco.koerner (at) tum.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Reinartz, Peterpeter.reinartz (at) dlr.dehttps://orcid.org/0000-0002-8122-1475NICHT SPEZIFIZIERT
Datum:30 November 2018
Erschienen in:Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:10
DOI:10.3390/rs10121926
Seitenbereich:Seiten 1-20
Verlag:Multidisciplinary Digital Publishing Institute (MDPI)
ISSN:2072-4292
Status:veröffentlicht
Stichwörter:conditional generative adversarial networks; digital surface model; 3D scene refinement; 3D building shape; urban region
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Verkehrsmanagement (alt)
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V VM - Verkehrsmanagement
DLR - Teilgebiet (Projekt, Vorhaben):V - Vabene++ (alt), R - Vorhaben hochauflösende Fernerkundungsverfahren (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von: Zielske, Mandy
Hinterlegt am:07 Dez 2018 17:07
Letzte Änderung:31 Okt 2023 15:24

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.