
remote sensing  

Article

DSM-to-LoD2: Spaceborne Stereo Digital Surface
Model Refinement

Ksenia Bittner 1,* , Pablo d’Angelo 1 , Marco Körner 2 and Peter Reinartz 1

1 German Aerospace Center (DLR), Remote Sensing Technology Institute, Münchner Str. 20,
82234 Weßling, Germany; pablo.angelo@dlr.de (P.d.); peter.reinartz@dlr.de (P.R.)

2 Department of Civil, Geo and Environmental Engineering, Technical University of Munich (TUM),
Arcisstraße 21, 80333 Munich, Germany; marco.koerner@tum.de

* Correspondence: ksenia.bittner@dlr.de; Tel.: +49-8153-28-4285

Received: 25 September 2018; Accepted: 28 November 2018; Published: 30 November 2018 ����������
�������

Abstract: A digital surface model (DSM) provides the geometry and structure of an urban environment
with buildings being the most prominent objects in it. Built-up areas change with time due to the rapid
expansion of cities. New buildings are being built, existing ones are expanded, and old buildings
are torn down. As a result, 3D surface models can increase the understanding and explanation of
complex urban scenarios. They are very useful in numerous fields of remote sensing applications,
in tasks related to 3D reconstruction and city modeling, planning, visualization, disaster management,
navigation, and decision-making, among others. DSMs are typically derived from various acquisition
techniques, like photogrammetry, laser scanning, or synthetic aperture radar (SAR). The generation
of DSMs from very high resolution optical stereo satellite imagery leads to high resolution DSMs
which often suffer from mismatches, missing values, or blunders, resulting in coarse building shape
representation. To overcome these problems, we propose a method for 3D surface model generation
with refined building shapes to level of detail (LoD) 2 from stereo half-meter resolution satellite DSMs
using deep learning techniques. Mainly, we train a conditional generative adversarial network (cGAN)
with an objective function based on least square residuals to generate an accurate LoD2-like DSM
with enhanced 3D object shapes directly from the noisy stereo DSM input. In addition, to achieve
close to LoD2 shapes of buildings, we introduce a new approach to generate an artificial DSM with
accurate and realistic building geometries from city geography markup language (CityGML) data, on
which we later perform a training of the proposed cGAN architecture. The experimental results
demonstrate the strong potential to create large-scale remote sensing elevation models where the
buildings exhibit better-quality shapes and roof forms than just using the matching process. Moreover,
the developed model is successfully applied to a different city that is unseen during the training to
show its generalization capacity.

Keywords: conditional generative adversarial networks; digital surface model; 3D scene refinement;
3D building shape; urban region

1. Introduction

Worldwide urbanization has transformed vast farmlands and forests into urban landscapes,
resulting in the appearance of new houses and infrastructures. Due to these rapid changes, accurate
and timely updated cadastral 3D building model data are not often available, but are very valuable for
urban planning and city management, navigation, virtual environment generation, disaster analysis,
tourism, civil engineering, etc. The methodologies for realizing these applications are mainly based on
3D elevation information. Therefore, the automatic generation of 3D elevation models with accurate
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building shapes, including the recovery of disturbed boundaries and robust reconstruction of precise
rooftop geometries, is in demand.

Remote sensing technology provides several ways to measure the 3D urban morphology.
Conventional ground surveying, stereo airborne or satellite photogrammetry, interferometric synthetic
aperture radar (InSAR), and light detection and ranging (LIDAR) are the main data sources used
to obtain high-resolution elevation information [1]. The main advantage of digital surface models
(DSMs) generated using ground surveying and LIDAR is their good quality and detailed object
representations. However, their production is costly and time consuming, and covers relatively
small areas compared with images produced with spaceborne remote sensing [2]. SAR imagery is
operational in all seasons under different weather conditions. Nevertheless it has a side-looking
sensor principle that is not so useful for building recognition and reconstruction compared with
optical imagery. The DSMs generated from spaceborne data using stereo image matching nowadays
show relatively high spatial resolution and wide coverage which is preferable for large-scale remote
sensing applications, especially when using sub-meter multi-stereo data from, e.g., World-View or
Pleiades satellites. However, due to automatic DSM generation, some unwanted failures in building
geometries may occur which influence their later reconstruction and modeling. These originate from
applied interpolation techniques, temporal changes, or matching errors. For example, low-textured,
homogenous, or shadowed areas caused by a combination of sun to satellite viewing geometries and
surface properties often lead to blunders or not-sharp rooftop contours, as the automatic matching
of the homologous points fails. Specific radiometric effects, such as spilling and saturation on roof
planes due to the acquisition geometry, the surface type, or the inclination, may also lead to local
blunders [3]. Moreover, densely located buildings in city areas cause uncertainty on building edges. As
a result, the applied interpolation techniques lead to low sharpness. Another very common problem
in urban areas is the occurrence of occlusions due to tall buildings or trees; these also depend on the
acquisition viewing angles. Hence, these DSMs need to be refined either manually or automatically to
make them more useful for remote sensing applications.

As manual refinement is costly and time consuming, there has been a considerable amount of
research done regarding automatic 3D surface model refinement. Several researchers tried to enhance
DSMs by removing inconsistency errors. Shi and Tian [4] attempted to overcome the noise and
outliers within the DSMs by incorporating both bi-linear and the bi-cubic interpolation methods.
Yang et al. [5] proposed to improve the small-scale DSMs by optimizing the interpolation parameters
using independent validation data with higher accuracy and semi-quantitative analysis of DSM
derivatives. In the work of Karkee et al. [6], the improved DSM was generated by the fusion of two
independent DSMs by employing the relative elimination of errors followed by height summation.
Moreover, DSM denoising through the application of different filters is also a very common technique
for removing the errors [7,8].

With the significant advances in machine learning and the development of deep convolutional
neural networks (CNNs), which nowadays provide the best solutions for many computer vision
tasks, like classification, localization, detection, and segmentation, it became possible to power the
applications for self-driving cars, robotics, drones, security, and medical diagnoses. Along with their
ability to process spectral, textual, and acoustic data, they also can operate on depth images, not only
to perform object detection or classification but even to reconstruct 2D depth maps from one or several
spectral images. Laina et al. [9] estimated the depth image from a single RGB image by employing the
fully convolutional Network (FCN) architecture with feature map up-sampling within the network. A set
loss and two-streamed CNN that fuses predictions of depth and depth gradients into an accurate and
detailed depth map was investigated by Li et al. [10].

Recently, a further class of neural network, generative adversarial networks (GANs), was developed,
and it immediately gained a lot of attention in the field of machine learning. An innovative algorithm
was proposed to solve the giant problem of adapting two domains, such as image generation
from descriptions [11,12], high-resolution image generation from low-resolution images [13], video
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generation [14], anomaly detection in medicine [15], etc. GANs are even able to generate 3D objects
out of probabilistic space or 2D spectral or depth images [16–18].

The ability of CNN-based approaches to reconstruct depth images is strongly correlated with our
area of interest. As a result, in this paper, we analyze the potential of conditional generative adversarial
networks (cGANs) to reconstruct depth images from a bird’s-eye view perspective. Depth images, in our
case, represent the urban 3D structure with elevation information in the form of continuous values.
We aim to design a cGAN architecture based on the approach of Isola et al. [19] that takes a noisy stereo
DSM as input and produces an improved DSM with refined building shapes. We perform network
training on two different kinds of ground truth data, level of detail (LoD)2-DSM and LIDAR-DSM, where
the LoD2-DSM is the one artificially generated from city geography markup language (CityGML) data
containing only 3D building model information. It should be mentioned that although the so-called
LoD2-DSM does not contain any above ground objects except buildings, it is still useful for many
remote sensing applications, like navigation, 3D city modeling, and cadastral database updates.

The remainder of the paper is arranged as follows. In Section 2, work related to 3D urban
structure refinement from different data sources is summarized, together with recently developed
approaches for continuous data reconstruction using deep learning techniques. The background of
GANs, the used objective functions, and details of our deep network architecture are described in
Section 3. Furthermore, the description of necessary ground truth data generation, which is required
for the training process, is presented in this section. In Section 4, we introduce the dataset and
present implementation details and training strategies. The experimental results for two different
datasets applying the proposed deep network architecture, together with qualitative and quantitative
evaluations are shown and discussed in Section 5. Section 6 concludes the paper.

2. Related Work

Over time, the methodologies used for DSM generation have experienced a dramatic
improvement: from coarse to high-resolution elevation model generation with detailed building
shapes if high resolution data is used. However, despite their high resolution, they can still feature
many mismatches and noise due to perspective differences, occlusions by dense and complex building
structures, or stereo matching errors during DSMs generation. Therefore, post-processing steps on
DSM refinement are highly required and are a hot topic in current research.

In the literature, very few of the proposed approaches consider the stereo DSM enhancement of
urban areas. Some works proposed the computation of the parallax between two orthoimages and
used the displacement of the best match point to compute elevation errors in the DSMs [20,21]. Though
the proposed techniques work fine in rural regions, they are inapplicable when surface discontinuities
exist. Other approaches investigated DSM by refining using filtering techniques, such as a Gaussian
noise removal filter [22] or geostatistical filter [23]. However, the smoothness effect, due to the filtering,
dramatically influences the steepness of the building walls. Sirmacek et al. [24] proposed to enhance
the building shapes by, firstly, extracting the possible building segments through thresholding the
normalized digital surface model (nDSM). In the next step in this process, building shapes are detected
by applying the box-fitting algorithm. Finally, the building walls in the DSM are sharpened using
the information from detected building shapes, and the noise in building rooftops is smoothed. This
methodology is limited to the detection and enhancement of rectangular buildings which is not the
case for most of the complex building shapes in urban areas. In a following study, Sirmacek et al. [25]
improved the shape detection of complex buildings by fitting a chain of active shape models to the input
data. Additionally, in this study, the Canny edge information from spectral images was considered to
fit rectangular boxes. Although they achieved better results in terms of building footprints compared
to [24], only one single height value was assigned to each building shape. Another approach that deals
with outliers, mismatches, and erroneously detected occlusions in DSM was proposed by Krauß and
Reinartz [26]. It is based on an segmentation algorithm. The segmentation from the stereo image is
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transferred to the DSM and following a statistical analysis and spectral information, a coarse object
detection and classification is performed. Afterwards, using this information the DSM is refined.

In recent years, as deep learning techniques have emerged, new approaches for remote sensing
image processing have achieved significant breakthroughs. However, most of these approaches work
with spectral imagery, while depth image processing has still not been well investigated. In computer
vision, on the other hand, there have already been several attempts to generate, restore, and enhance
depth images using CNNs. Eigen et al. [27] and Eigen and Fergus [28] performed coarse-to-fine
learning of two and three convolutional networks in stages, respectively, to transform a monocular
color input image into a geometrically meaningful output image at a higher resolution. Liu et al. [29]
explored the strength of a deep structured CNN which learns the unary and pairwise potentials of
a continuous conditional random field (CRF) which enforces local consistency in the output image. In
contrast to standard methods, it inputs an image consisting of small regions of homogeneous pixels
to the network. The method can also work with single pixels, but it is computationally inefficient.
The method delivers predictions with sharper transitions compared to previous studies, but with a
mosaic appearance. Zhu and Ma [30] trained a model for depth estimation consisting of two parts:
a pre-trained VGG [31] and two fully connected layers of their own design. This network only allows a
gradient descent optimization algorithm for five convolutional layers starting from the end. Although
these methods are able to generate depth images relatively close to the ground truth, the sharpness of
the object edges and their appearances in the image are very coarse. Jeon and Lee [32] aimed to solve a
problem similar to ours regarding depth image enhancement. They explored a multi-scale Laplacian
pyramid-based neural network and structure preserving loss functions to progressively reduce the
noise and holes from coarse to fine scales.

The development of GANs [33] helped to achieved impressive results in high-quality image
generation tasks. There have already been many studies on the mapping of images between different
domains, such as black and white images into color, or satellite images to maps [19]. Recently, some
works proposed the learning of object representations in three-dimensional space based on different
variations of GAN architecture. These methods typically use autoencoder networks [34,35] combined
with a generative adversarial approach to generate 3D objects. Wu et al. [16] modeled 3D shapes from a
random input vector by using a variant of GAN with volumetric convolutions. Although the algorithm
produces 3D objects with high quality and fine-grained details, the final grid has limited resolution.
Rezende et al. [36] introduced a general framework to learn 3D structures from 2D observations
with a 3D-2D projection mechanism. However, the proposed projection mechanism minimizes the
discrepancy between the observed mask and the reprojected predictions either through a learned or
fixed reprojection function. Recently, Yang et al. [18] proposed an automatic completion of 3D shapes
from a single depth image using GANs. The architecture combines cGANs [37] with autoencoders
to generate accurate 3D structures of objects. The method learns both local geometric details and the
global 3D context of the scene to infer occluded objects from the scene layout. However, designing a
network that can efficiently learn both components is a non-trivial task [38]. All of these studies learn
a single object reconstruction based on existing libraries of individual objects and are able to produce a
probability for occupancy at each discrete position in the 3D voxel space. Yet, the computational and
spatial complexities of such voxelized representations significantly limit the output resolution. In our
work, we approach the problem differently.

Despite the trials of depth image estimation with deep CNNs and 3D object generation with
variational GANs architectures, there is no direct similarity to the problem we try to solve. Mainly,
there have been no attempts to generate a remote sensing 3D elevation model with an accurate
building structure in the past using CNN-based methodologies. In addition, among the variety of
methodologies that have been developed to refine the 3D urban structure, only a few of them use
DSMs generated from stereo satellite imagery, as this type of data features strong noise, inconsistencies,
or absence of data due to occlusions between the objects. Urban surface reconstruction based on stereo
satellite imagery still is a complex problem. In continuation from our previous investigations [39,40],
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where we made the first attempt to generate a LIDAR-like quality DSM out of a given stereo DSM
using a cGAN with an objective function based on negative log likelihood, we further explore the
potential to generate DSMs with a refined form of buildings without any limitations on their geometry
or space scale. Our contributions are as follows:

• We efficiently adapt the cGAN architecture developed by Isola et al. [19] from generic images
to satellite images and analyze it for different data sources: LoD2-DSM from CityGML and
LIDAR-DSM.

• We investigate the potential of using the objective function with least squares instead of negative
log likelihood through which we gain more accurate building structures.

• The proposed framework generates images with continuous values representing the elevation
models and, at the same time, enhances the building geometries.

• Our approach is not limited to the libraries of predefined building models and, as a result, can be
generalized to large-scale scenes.

• We propose a methodology to convert CityGML data into LoD2-DSM.
• We develop a universal network which is able to generalize different urban landscape that have

not been seen previously by the model, as generalization is an important aspect for remote
sensing applications.

To our knowledge, this is the first study to carry out DSM refinement using deep learning
techniques.

3. Methodology

3.1. Objective

GANs represent one of the few types of machine learning technique that is able to perform well
for generative tasks. As proposed by Goodfellow et al. [33] in 2014, such techniques are characterized
by training a pair of networks, namely a generator G and a discriminator D, which are trained in an
adversarial manner to compete against each other.

The aim of G(z) = y is to implement a differentiable function to map a latent vector z ∼ pz(·)
drawn from any distribution pz(·), e.g., a uniform distribution pz(·) = Unif(a, b), to an element
y ∼ preal(·) that is approximatively distributed according to preal, i.e., into the form of the data we
are interested in imitating. On the other hand, D(y) ∈ [0, 1] attempts to differentiate between the
generated data y and the genuine sample y∗. The objective function for GANs can be expressed
through a two-player minimax game:

min
G

max
D
LGAN(G, D) = Ey∼preal(y)[log D(y)] +Ez∼pz(z)[log(1− D(G(z)))], (1)

where E[·] denotes the expectation value. The discriminator D is realized as a binary classification
network that outputs the probability that an input image belongs either to class 0 (“generated”) or to
class 1 (“real”). During training, the G aims to create samples that look more and more real, while the
D intents to always correctly classify where a sample comes from.

In this paper, we address the generation of better-quality DSM featuring refined building shapes
at LoD2 according to the definitions of CityGML [41]. In other words, we aim to generate artificial
LoD2-like height images with a similar appearance to the given DSMs from stereo satellite imagery
but with an improved building appearance.

The conditioning of the model on external information was first introduced by
Mirza and Osindero [37]. The cGANs restrict both the generator in its output and the discriminator in
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its expected input. As a result, cGANs allow the generation of artificial images similar to some known
input image x. In contrast to Equation (1), the cGAN objective function

min
G

max
D
LcGAN(G, D) = Ex,y∼preal(y)[log D(y|x)] +Ex,z∼pz(z)[log(1− D(G(z|x)))] (2)

now involves some conditional data x.
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Figure 1. Schematic overview of the proposed U-Net architecture. Each convolution operation has a
kernel of size 4× 4 with stride 2. For up-sampling, the transposed convolution operations with kernels
of size 4× 4 and stride 2 are used. The Leaky ReLU activation function in the encoder part of the
network has a negative slope of 0.2.

Since the appearance of cGAN, many extensions to its architecture have been proposed.
The architecture of Isola et al. [19] gained the most popularity in cases involving the image-to-image
translation problem, and is used nowadays as a basic model for image generation tasks. Our method
also builds upon this adversarial system to generate images with continuous values representing the
elevation information.

It is common to blend the GANs objective with traditional losses, such as L1 or L2 distances, as
this helps the generator to make the created image as close to the given ground truth in an L1 or L2

sense. As we are interested in images where the buildings have steep walls and sharp ridge lines, we
use the L1 distance

LL1(G) = Ex,y∼preal(y),z∼pz(z)[‖y− G(z|x)‖1], (3)

as it encourages less blurring. Adding this term leads to our final objective:

G? = arg min
G

max
D
LcGAN(G, D) + λ · LL1(G), (4)

where 0 ≤ λ ∈ R is a balancing hyper-parameter.
Moreover, to overcome the common problem of unstable training when the objective function

of GANs is based on the negative log-likelihood, we apply a technique that was recently proposed
by Mao et al. [42] which replaces the negative log likelihood in Equation (2) by a least square loss L2,
yielding the conditional least square generative adversarial network (cLSGAN) objective:

LcLSGAN(G, D) = Ex,y∼preal(y)[(D(y|x)− 1)2] +Ex,z∼pz(z)[D(G(z|x))2]. (5)
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This makes it possible both to stabilize the training process and to improve the quality of the
generated image. Therefore, we also investigate the influence of this alternative training procedure
using cLSGAN

G? = arg min
G

max
D
LcLSGAN(G, D) + λLL1(G), (6)

for our proposed generation of better-quality DSMs.

Stereo DSM

Ground truth: LoD2-DSM

Generator: U-Net

Discriminator

Discriminator

Negative Example

Fake DSM

Stereo DSM

Positive Example

Stereo DSM

LoD2-DSM
256

25
6

256

25
6

conv 4× 4, stride 2
LeakyReLU
Batch Normalization
Sigmoid

Figure 2. Schematic overview of the proposed method for the 3D building shape improvement in
stereo DSM by cGAN. The DSM images are color-shaded for better visualization.

3.2. Network Architecture

We adapted our architectures from those presented by Isola et al. [19]. The network G is a
U-Net [43] accepting a single-channel depth image with continuous values as input. The tanh
activation function σtanh(z) = tanh(z) is applied on the top layer of the G network. The U-Net
is an encoder-decoder type of network that progressively down-samples the input through a series
of layers until a bottleneck layer and codes back the process from this point. In order to recover
important details that are lost due to the down-sampling in the encoder, skip connections are added
to the network, which combine the encoder layer i with the up-sampled decoder layer n− i at every
stage. In our work, the encoder part of U-Net is constructed with 8 layers and 7 skip connections.
The stereo DSM images are accepted as an input image of this network. The detailed U-Net network
architecture is illustrated in Figure 1.

The D network is a binary classification network consisting of 5 convolutional layers in our case.
The input to the discriminator D is a concatenation of a stereo DSM with either a U-Net-generated
fake DSM or a ground-truth DSM. The D has a sigmoid activation function σsigm(z) = 1

1+e−z on the top
layer as it is meant to output the probability that the input image belongs either to class 1 (“real”) or
class 0 (“generated”).

A schematic diagram of the proposed network architecture is illustrated in Figure 2.

3.3. LoD2-DSM Ground Truth Data Generation

CityGML encodes a standard model and mechanism for describing different kinds of 3D city
objects with respect to their geometry, topology, semantics, and appearance. It also provides specific
relationships between different objects, e.g., a building is decomposed of roof, wall, and ground
surfaces, as seen in Figure 3a. For the creation of LoD2-DSM, the roof polygons of each building from
the database consisting of points with location and height information are selected. Each polygon is
triangulated afterwards (cf. Figure 3b) using the algorithm introduced by Shewchuk [44] based on
Delaunay triangulation [45]. The software is publicly available. It should be noted that the triangular
surfaces are left as they are. In order to generate a raster height image, we developed a method to
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calculate a unique height value of pixels lying inside each triangle using barycentric interpolation. The
pixels outside buildings are filled with a digital terrain model (DTM) −, a mathematical representation
of the ground surface without above-ground objects. As a result, the artificially generated so-called
LoD2-DSM does not contain any vegetation, only building information. This can be clearly seen in
Figure 4.

1

2

3

4

(a)

1 2 3 4

(b)

Figure 3. An example of CityGML building model representation and triangulation of its roof surfaces.
(a) CityGML building model representation; (b) roof surface triangulation.

(a) Google Earth View (b) Stereo DSM (c) LoD2-DSM

Figure 4. Illustration of differences in vegetation representation between a stereo DSM from
WorldView-1 satellite and an artificially generated LoD2-DSM.

4. Study Area and Experiments

Two different types of ground truth datasets were used for network training and evaluation of
the results.

The first dataset consisted of a spaceborne stereo DSM and a LoD2-DSM. The LoD2-DSM was
generated with a resolution of 0.5 m from a CityGML data model that is freely available on the
download portal Berlin 3D (http://www.businesslocationcenter.de/downloadportal). The process of
this type of DSM generation is given in Section 3.3.

The second dataset consisted of a spaceborne stereo DSM and LIDAR-DSM. We ran this
experiment to demonstrate the improvements in the results from our previous work and, additionally,
to produce a trained network to perform a model generalization test on (see Section 5.2), as only
LIDAR-DSM data is available for another region. Semi-global matching (SGM) [46] was used to generate
a stereo DSM with a resolution of 0.5 m from six panchromatic Worldview-1 images acquired on two
different days. The LIDAR-DSM considered as a ground truth was provided by the Senate Department
for Urban Development and Housing, Berlin. It was generated from airborne laser scanning data with a
resolution of 1 m and up-sampled to the resolution of 0.5 m to establish consistency with the available
stereo DSM. We used the last pulse laser scanning data which contains much less vegetation compared
to the stereo DSM. Both datasets used for this experiments show Berlin city, Germany within a total
area of 410 km2.

The LIDAR-DSM was used as a vertical and horizontal reference during the automatic image
orientation as part of the LoD2-DSM generation process. However, a systematic deformation of up to

http://www.businesslocationcenter.de/downloadportal
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3.5 m between the LoD2-DSM and the stereo DSM was noticed. We thus co-registered the LoD2-DSM
to the stereo DSM using an affine transformation based on 19 manually selected points, leading to a fit
with a standard deviation of less than 1 m.

To investigate the prediction model‘s capacity over a different urban landscape, a third stereo
DSM and LIDAR-DSM dataset showing a part of Munich city, Germany, was considered. For this test,
the stereo DSM from WorldView-2 satellite imagery with a resolution of 0.5 m derived by the same
methodology [46] was used. The last pulse airborne laser scanning data with a resolution of 1 m2 was
provided by Bavarian Agency for Digitisation, High-Speed Internet and Surveying. The data was rasterized
with a resolution of 0.5 m. The Munich dataset covering 9 km2 was used only for the inference phase.

4.1. Implementation and Training Details

4.1.1. Training Process

As this paper is a follow-up to our previous work [39], the DSM-to-LoD2 network was also
based on the cGAN architecture developed by Isola et al. [19] on PyTorch python package with a
slight extension. To organize the training data, the satellite images were tiled into patches of size
256× 256 px which fit into the available GPU memory and was large enough to capture not only a
single building but also a constellation of building structures and their surroundings. This led to the
production of sufficient context information required by the network about building shapes, positions,
and orientations. The prepared training data for the learning process consisted of 21,480 pairs of
patches covering an area of 353 km2. To tune the hyper-parameters, validation data covering 6 km2 was
used. The DSM-to-LoD2 network was trained with minibatch stochastic gradient descent (SGD) using
the ADAM optimizer [47] with an initial learning rate of α = 0.0002 and momentum parameters of
β1 = 0.5 and β2 = 0.999 for both setups cGAN and cLSGAN. We chose the weighting hyper-parameter
λ = 1000 after performing the experimental training and examining the resulting generated images
and their profiles. During the training phase, two networks G and D were trained at the same time
by alternating one gradient descent step of D and one gradient descent step of G. To achieve a
better optimization behaviour when training cGANs, it is common to change G to maximize the
log D(x, G(z|x)) instead of minimizing log(1− D(x, G(z|x))). The total number of epochs was set
to 200 with a batch size of 5 on a single NVIDIA TITAN X (PASCAL) GPU with 12 GB of memory.
Within the training, a random cropping of the tiles up to one tile size was used instead of the up-scale
and random crop data augmentation from the original code. The idea behind this was that the network
may observe only some parts of a building in one patch for one cropping and the whole building in
the next time period. Although different configurations were observed in different moments, it has
been the same building featuring the same properties. This made the network more general, robust,
and flexible to a variety of building types.

4.1.2. Inference Process

During the inference process, only the trained generator G of the DSM-to-LoD2 network was
involved. It generated LoD2-like height images covering 50 km2 after stitching the overlapping
patches for the final full image generation. The overlap for the test data was fixed at 128 px in both
the horizontal and vertical directions. The test dataset consisted of stereo DSM patches that were never
shown to the networks during the training phase.

4.2. Evaluation Metrics

The quantitative evaluation of generative models is a challenging task especially if the generated
images contain continuous values rather than discrete values. Common metrics used to measure
accuracy for continuous variables are the mean absolute error (MAE)

εMAE(h, ĥ) =
1
n

n

∑
j=1
|ĥj − hj| (7)
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and the root mean squared error (RMSE)

εRMSE(h, ĥ) =

√√√√ 1
n

n

∑
j=1

(ĥj − hj)2, (8)

where ĥ = (ĥj)j, 1 ≤ j ≤ n, denotes the predicted heights and h = (hj)j the actually observed ones.
Usually, the specifications of these accuracy metrics are based on the assumptions that the errors
follow a Gaussian distribution and that no outliers exist [48]. However, DSMs derived by digital
photogrammetry seldom features a normal error distribution due to the presence of outliers and
filtering or interpolation errors. Therefore, Höhle and Höhle [48] proposed the use of a robust scale
estimator, such as the normalized median absolute deviation (NMAD)

εNMAD(h, ĥ) = 1.4826 ·median
j

(|∆hj −m∆h|) (9)

which is suitable for non-normal error distributions. It is proportional to the median of the absolute
difference between height errors, denoted as ∆hj, and the median error m∆h. The constant 1.4826
was included so that NMAD is comparable to the standard deviation when the data are distributed
normally. This estimator can be considered more robust to outliers in the dataset.

Moreover, as we wanted to compare the similarity of generated LoD2-like height image to the
ground truth DSM, the normalized correlation coefficient (NCC)

εNCC(h, ĥ) =
1
n

n
∑

j=1
(hj − h̄)(ĥj − ¯̂h)√

n
∑

j=1
(hj − h̄)2

√
n
∑

j=1
(ĥj − ¯̂h)2

(10)

between the two signals h and ĥ was examined. Here, h̄ and ¯̂h are the means of all the elements in h and ĥ.
It should be mentioned that as we were interested in quantifying the improvements of the building

shapes on DSMs, the above mentioned metrics were measured only in the area where buildings were
situated. This was achieved by extracting useful information from the binary building mask generated
from the same CityGML data model. Besides, we exceeded the building footprints by a three-pixel
dilation on the boundaries to make sure that the 3D information of building walls was included as we
were interested in its improvement.

5. Results and Discussion

5.1. cGAN vs. cLSGAN

The examples of DSMs generated by the DSM-to-LoD2 network for both LoD2-DSM and
LIDAR-DSM datasets are depicted in Figures 5 and 6, respectively. By investigating the obtained DSMs,
we can see that both cGAN and cLSGAN networks are able to generate the elevation models close to
the given ground truths. In the case of LoD2-like DSM, the model managed to learn that there is no
vegetation in the artificially created LoD2-DSM. This also can be seen by referencing the computed
height variation maps in Figure 5f,g,n,o, of the generated DSMs in comparison to the LoD2-DSM from
CityGML data. The low lightness denotes areas where the stereo or generated DSMs are higher than
the ground truth DSM. As a result, Figure 5e,m demonstrate that the DSM from stereo satellite imagery,
on the other hand, contains many trees. Other objects, like, e.g., cranes or electrical power poles, also
vanished, as they did not exist in the artificial LoD2-DSM generated from CityGML data. Regarding
the LIDAR-DSM dataset, there is only small amount of vegetation on the ground truth DSM as the
LIDAR point cloud we used was from the last pulse. Therefore, the model focuses on building object
reconstruction and eliminates or creates areas with a small amount of vegetation while generating the
height images (see Figure 6f,g,n,o).
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Figure 5. Visual analysis of DSMs, generated by cGAN and cLSGAN architectures, over selected
urban areas. The DSM images are color-shaded for better visualization. Difference maps in meters
of stereo and generated DSMs with respect to ground truth LoD2-DSM of selected regions are in the
second and fourth lines, respectively. The profiles of selected buildings from DSM generated by cGAN
are illustrated in the fifth line and the ones from cLSGAN are in the sisth line.

Figure 5. Visual analysis of DSMs, generated by cGAN and cLSGAN architectures, over selected urban
areas. The DSM images are color-shaded for better visualization. Difference maps in meters of stereo
and generated DSMs with respect to the ground truth LoD2-DSM of the selected regions are shown in
the second and fourth lines, respectively. The profiles of selected buildings from DSM generated by
cGAN are illustrated in the fifth line, and the ones from cLSGAN are in the sixth line.
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Figure 6. Visual analysis of DSMs, generated by cGAN and cLSGAN architectures, over selected
urban areas. The DSM images are color-shaded for better visualization. Difference maps in meters
of stereo and generated DSMs with respect to ground truth LIDAR-DSM of selected regions are in
the second and fourth lines, respectively. The profiles of selected buildings from DSM generated by
cGAN are illustrated in the fifth line and the ones from cLSGAN are in the sixth line.

Figure 6. Visual analysis of DSMs generated by cGAN and cLSGAN architectures over selected urban
areas. The DSM images are color-shaded for better visualization. Difference maps in meters of stereo
and generated DSMs with respect to ground truth LIDAR-DSM of selected regions are shown in the
second and fourth lines, respectively. The profiles of selected buildings from DSM generated by cGAN
are illustrated in the fifth line, and the ones from cLSGAN are in the sixth line.
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(a) (b) (c) (d)
Figure 7. Demonstration of generalization of existed buildings in the input DSM using both cGAN
and cLSGAN methodologies trained on LIDAR ground truth data. (a) illustrates the input stereo
DSM, (b) is a generated DSM using cGAN, (c) is a generated DSM using cLSGAN, and (d) is a LIDAR
ground truth.

In addition, it should be highlighted that the network was trained to only manipulate existing
buildings and did not generate new buildings or its parts if there is no building in the input data. Good
examples can be seen in highlighted areas in Figure 6n,o or in the zoomed part of the first LIDAR-DSM
area illustrated in Figure 7. This building exists on the given LIDAR-DSM. However, as there is no
sign about it within the stereo DSM, the two models cGAN and cLSGAN did not reconstruct it. There
are only a couple of examples highlighted here, but, unfortunately, there are more in reality, as a data
acquisition time difference exists between the available DSM generated from stereo satellite images
and the given ground truth data.

Regarding the quality of generated DSMs, one can say that the results from the proposed cLSGAN
technique are very similar to those from cGAN. However, detailed investigation shows that cLSGAN
outperforms cGAN. For example, the height difference maps demonstrate that there are less or no
residuals within building areas on DSMs from cLSGAN models. In addition, it can be seen that the
building structures are fully reconstructed without missing parts. This can be clearly observed in the
next example. By zooming into two selected buildings (see Figure 8) from the LoD2-like first and
second DSM areas, we can see that the buildings generated by the cLSGAN model are more detailed
and complete than the one from the cGAN model. The right side of the first building highlighted with
1 in Figure 8a is almost missing and the inside construction highlighted with 2 was not reconstructed
at all. Here, the cLSGAN produced better results, as it managed to generate those parts (see Figure 8b).
Regarding the second building, one can see that the upper part of the construction generated by cGAN
is not detailed compared to the one from cLSGAN. Concerning the bridge that connects two parts of the
building, the same problem occurred. Besides, a certain pattern of holes on some buildings generated
by cGAN models was discovered on both datasets LoD2-DSM and LIDAR-DSM. An example of these
distortions can be seen in detailed view in Figure 8a. A more detailed discussion is given later during
the quantitative evaluation analysis.

By investigating the profiles of selected buildings highlighted by red lines in Figures 5c,k and 6c,k
for LoD2-DSM and LIDAR-DSM datasets, respectively, we can confirm that, in general, both cGAN
and cLSGAN models can successfully learn 3D building representations that are close to the ground
truths (green profiles). However, as it was mentioned before, some artifacts exist on the height images
generated by the cGAN model. This is not dependent on the data type as both obtained results from
LoD2-DSM and LIDAR-DSM datasets have this problem. Examples are demonstrated in Figure 5r for
LoD2-DSM and in Figure 6k,r for LIDAR-DSM. Fortunately, the application of the cLSGAN model
helped to smooth the artifacts and bring the shape of building even closer to the ground truth shapes.
This achievement is clearly seen in Figures 5v and 6u,v. Of course, not every building in the generated
results exhibited holes. The demonstrated bad examples were chosen for the visual notion. Moreover,
not only the quality of flat roofs was improved. The gable, hip, or any other roof type consisting
of inclined planes can be improved by applying our methodology. As can be seen from the profiles
(Figures 5w,x and 6w,x), the cLSGAN model provided much better results. The planes of roof surfaces
are much smoother and more symmetrical regarding the central ridge line. Primarily, the ridge lines
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are much sharper in comparison to ridge lines from the stereo DSM and are at the central position
which gives a more realistic view and is geometrically more correct. Additionally, all profiles show
very close resemblance to the ground truth shapes, especially regarding the width and borders of
the buildings.

To quantify the generated DSMs, we evaluated the proposed metrics on all setups, and their
performances are reported in Table 1. In general, the resulting DSMs from our cGAN model revealed
the same or slightly worse results compared even to the normal stereo DSM. The reason for this lies in
the fact that the cGAN model uses the sigmoid cross entropy loss function for the discriminator [33]
that leads to the vanishing gradient problem when updating the generator using the created samples
that are on the correct side of the decision boundary but are still far from the real data [49]. As a result,
the discriminator believes that the created images come from real samples and causes almost no error
by updating the generator as the images are on the correct side of the decision boundary. Therefore,
some parts of the buildings are still badly reconstructed, completely missed, or feature holes, as shown
in the example in Figure 8a. The relatively high values of RMSE for the LoD2-DSM setup compared to
the LIDAR-DSM may be due to the much bigger time difference in data acquisition which leads to
cases like those depicted in Figure 7. This influences the computed metrics a lot. The results obtained
by the cLSGAN model on both datasets quantitatively outperforms the stereo DSM and the DSMs
generated by the cGAN model as they are much smoother, able to reconstruct even small parts of
buildings, and do not contain any artifacts. Mao et al. [49] explained that as a powerful feature of the
least squares loss function that moves the created samples toward the decision boundary and penalizes
samples that lie in a long way on the correct side of the decision boundary. As a result, this allows the
generation of more realistic samples. The NCC metrics for the cLSGAN model lay close to 1 (0.91 for
LoD2-DSM and 0.94 for LIDAR-DSM) which indicates that the produced results are meaningful and
resemble the ground truth. Processing one patch of size 256× 256 pixels with the proposed network
took 0.2 seconds on a single NVIDIA Titan X Pascal GPU.

Table 1. Prediction accuracies of cGAN and cLSGAN models on all investigated metrics for LoD2-DSM
and LIDAR-DSM datasets over the Berlin area.

LoD2-DSM Dataset

MAE, m RMSE, m NMAD, m NCC, m

Stereo DSM 3.21 6.69 1.51 0.86
Generated DSM by cGAN 3.05 6.66 1.30 0.86

Generated DSM by cLSGAN 2.26 5.46 0.82 0.91

LIDAR-DSM Dataset

Stereo DSM 2.55 4.9 1.35 0.92
Generated DSM by cGAN 2.8 5.15 1.75 0.91

Generated DSM by cLSGAN 2.22 4.32 1.29 0.94

(a) (b)

12

(c) (d)
Figure 8. Comparison of generalization over DSM between cGAN and cLSGAN methodologies for two
selected buildings. (a,c) are the generated buildings by cGAN and (b,d) are the generated buildings by
cLSGAN.



Remote Sens. 2018, 10, 1926 15 of 20Version November 28, 2018 submitted to Remote Sens. 16 of 18

(a) Stereo DSM

- �1 2

(b) LIDAR-like DSM (c) LoD2-DSM (d) LIDAR DSM

(e) Stereo DSM

- �
3

4

(f) LIDAR-like DSM (g) LoD2-DSM (h) LIDAR DSM

Distance along the line

H
ei

gh
t,m

(i) Profile 1

Distance along the line

(j) Profile 2

Distance along the line

(k) Profile 3

Distance along the line

(l) Profile 4

Distance along the line

H
ei

gh
t,m

(m) Profile 1

Distance along the line

(n) Profile 2

Distance along the line

(o) Profile 3

Distance along the line

(p) Profile 4

Stereo DSM LIDAR DSM LIDAR-like DSM LoD2-like DSM

Figure 9. Visual analysis of generalization by cLSGAN architecture over selected urban areas of
Munich city using both setups LoD2-DSM and LIDAR-DSM. The DSM images are color-shaded for
better visualization. Figures (a), (e) depict the input stereo DSM data, (b), (f) is the generated DSM
from LIDAR-DSM, (c), (g) is the generated DSM from LoD2-DSM and (d), (h) is the LIDAR ground
truth data. depict the LIDAR ground truth. The profiles of selected buildings from DSM generated
by LIDAR-DSM setup are illustrated in the third line and the ones from LoD2-DSM setup are in the
fourth line.

The statistical results of the experiment can be found in Table 2. Analyzing the results for the Munich466
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Figure 9. Visual analysis of generalization by cLSGAN architecture over selected urban areas of Munich
city using both setups LoD2-DSM and LIDAR-DSM. The DSM images are color-shaded for better
visualization. (a,e) depict the input stereo DSM data, (b,f) is the generated DSM from LIDAR-DSM,
(c,g) is the generated DSM from LoD2-DSM, and (d,h) is the LIDAR ground truth data. The profiles of
selected buildings from DSM generated by LIDAR-DSM setup are illustrated in the third line, and the
ones from LoD2-DSM setup are in the fourth line.

5.2. Model Generalization Capability

To demonstrate the capability of the network to generalize on diverse urban landscapes,
we performed a 3D reconstruction of Munich city, Germany. This dataset is different from the Berlin
dataset. Although, at first sight, the building architecture styles are similar to those in Berlin city, as
both of them belong to one country, the huge amount of construction within the cities excludes the
possibility of meeting identical buildings. Moreover, the Munich and Berlin datasets have different
absolute height values above sea level.

Without re-training the model on the new dataset, we directly generated the Munich elevation
image by passing WorldView-2 data through the DSM-to-LoD2 network trained on LIDAR-DSM
and LoD2-DSM. The 1000× 1000 pixel examples of generated height images from both data types
are illustrated in Figure 9b,c,f,g, respectively. From the resulting 3D height images, it can be seen
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that the proposed model successfully managed to generate the 3D elevation constructions over a
new area. As expected, no new buildings were generated. However, some buildings were only
partially reconstructed using both models. In example 1 of LIDAR-DSM in Figure 9b and LoD2-DSM
in Figure 9c, the highlighted building was only partially reconstructed on both datasets. From the
zoomed version of the highlighted buildings in Figure 10, we can clearly see that the quality of both
input buildings from the stereo DSM is quite low—not regular and very noisy. The shape of the
first building (see Figure 10a) is not consistent, and the ridge line has a form close to a zigzag. The
second building in Figure 10e is most probably surrounded with vegetation and, due to interpolation
processes, resulted in an object with irregular form. Even for the human eye, it is difficult to say if
this object is a building. Therefore, both models experienced problems with these buildings, which
confirms our theory of bad quality data influence. The solution here could be to use an additional
information like spectral images during the training, which is very useful for object detection and
classification tasks.

By investigating the presented profiles, we noticed that the roof shapes were improved by
applying both models—the ridge lines are sharper and appear much better now compared to the stereo
DSM. Comparing the roof profiles between LIDAR-DSM (third line in Figure 9) and LoD2-DSM (fourth
line in Figure 9), a small improvement in ridge line sharpness was produced with the LoD2-DSM
model. Regarding the wall steepness, the buildings generated by the LoD2-DSM model are close to
perpendicular wall planes in contrast to the one generated by applying the LIDAR-DSM model. This is
reasonable, as the LIDAR-DSM was rasterized from a point cloud using interpolation and, as a result,
features smooth transitions from the roof to the ground.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 10. Example of two buildings generated by the LIDAR-DSM setup (b,f) and LoD2-DSM setup
(c,g), respectively. (a,e) show the buildings on stereo DSM and (d,h) on LIDAR DSM ground truth data.
The depicted examples are from the Munich area.

For the quantitative evaluation, we assumed the available LIDAR-DSM to be our ground truth,
even when comparing the generated LoD2-like DSM, as no CityGML data was available for the Munich
area. The statistical results of the experiment can be found in Table 2. The analysis of the results for the
Munich area showed that the stereo DSM produced closer results to the LIDAR-DSM, considered as
the ground truth, than both generated DSMs. This is due to the described effect of unreconstructed
buildings or their parts by both models from the bad quality input image. Additionally, the generated
LIDAR-like DSM showed better results in comparison to LoD2-like DSM due to the fact that the wall
planes experienced a smooth transition from the roof to the ground, which is similar to what occurred
in the ground truth data. In LoD2-like DSM, this transition was more perpendicular and, as a result,
farther from the considered ground truth. This influenced the values of the metrics too. However,
as we saw big improvements in shapes from analyzing the profiles, we decided to also evaluate the
selected metric on a single building for which the profile 1 was investigated. The obtained results
are summarized in the second part of Table 2. We can see a significant jump in the NCC metric for
both generated DSMs which indicates the strong similarity to the ground truth building form. In
addition, the LoD2-like DSM even outperformed the LIDAR-like DSM as expected due to the fact that
the CityGML data provided more regular and better quality building shapes than the LIDAR-DSMs
and the network was able to learn these features. Therefore, we proved that the proposed network is
able to improve the law quality building shapes. It also can be said that this kind of accuracy analysis
is not really suitable for a large area, but due to the lack of other potential evaluations, we still used
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it here. The improvements can be also seen in the three-dimensional visualization of the building
geometry in Figure 11.

Table 2. Prediction accuracies of cGAN and cLSGAN models for all investigated metrics for LoD2-DSM
and LIDAR-DSM datasets over the Munich area.

Munich Area

MAE, m RMSE, m NMAD, m NCC, m

Stereo DSM 2.10 4.68 0.92 0.87
Generated LIDAR-like DSM 2.53 4.88 1.41 0.86
Generated LoD2-like DSM 3.27 5.81 1.78 0.84

One Building

Stereo DSM 2.0 3.81 1.18 0.85
Generated LIDAR-like DSM 2.10 3.35 1.60 0.88
Generated LoD2-like DSM 1.87 3.39 1.48 0.93

(a) Stereo DSM (b) LIDAR-like
DSM

(c) LoD2-like
DSM

(d) LIDAR DSM (e) Google Earth View

Figure 11. Example of the generated building with a refined 3D shape for Munich city.

6. Conclusions

Many previous works have modeled natural images using conditional generative adversarial networks
(cGANs) in both the computer vision and the remote sensing fields. However, the modeling of images
that represent elevation models, i.e., contain continuous height values, is not common. We presented
a method for the automatic digital surface models (DSMs) generation and refinement of building
shapes to the level of detail (LoD) 2 from spaceborne stereo DSMs by applying a cGANs with negative
log-likelihood objective function. This refinement is under demand, as the satellite stereo DSMs
extracted from image matching point clouds suffers from occlusions, outliers, and noise. To achieve
the generation of the surface model with buildings, which exhibit detailed shapes and roof forms,
a good-quality DSM is necessary for formation of ground truth data during the training process. We
proposed a methodology for transformation of city geography markup language (CityGML) data to DSM
which delivers the necessary ground truth for training. Additionally, we performed training on light
detection and ranging (LIDAR) DSM data to demonstrate the generalization ability on different types of
data. The trained system was tested on two unseen areas in Berlin and Munich cities and achieved good
results. The evaluation of the results showed the potential of the proposed methodology to generalize
not only over diverse urban and industrial building shapes with complex constructions, but also in
different cities without major problems. The network generated 3D building geometries with enhanced
roof ridge lines, giving the buildings a more realistic appearance. Moreover, the detailed analysis
reported that the model did not hallucinate new buildings but only reconstructed and improved the
existing ones. Besides, vegetation reconstruction was not present and did not influence the generated
results. However, some noise or unreconstructed parts of buildings were still present in the resulting
DSMs. This can be explained as the consequence of the presence of very inaccurate parts in the input
stereo DSM from which some buildings cannot be recognized, even with the human eye. In the future,
additional information, like building masks or spectral images could be incorporated into the learning
process to give an additional hint to the network about incompletely or badly reconstructed buildings
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in spaceborne stereo DSMs. We believe that the presented technique has great potential to provide a
robust solution to the problem of DSM optimization with improved building geometries from remote
sensing imagery at a large scale.

Author Contributions: K.B. and P.d. worked on developing the code and training data preparation. K.B. and
M.K. performed the analysis. K.B. wrote the article. P.R. conceptualized the project and improved the manuscript.
All authors reviewed and commented on the manuscript.

Funding: This research was funded by the German Academic Exchange Service (DAAD:DLR/DAAD Research
Fellowship Nr. 57186656) for Ksenia Bittner.

Acknowledgments: We would like to thank the Senate Department for Urban Development and Housing, Berlin
for providing the airborne laser scanning point cloud. Furthermore, we thank Thomas Krauß and Maximilian
Langheinrich for their technical support on LIDAR-DSM and LoD2-DSM data generation.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Jacobsen, K. DEM Generation from Satellite Data. Available online: http://pdfs.semanticscholar.org/e066/
f8a278f845bf2cb19c9b4e81ec4dde1e1131.pdf (accessed on 25 August 2018).

2. Sefercik, U.G. Productivity of TerraSAR-X 3D data in urban areas: A case study in Trento. Eur. J. Remote Sens.
2013, 46, 597–612. [CrossRef]

3. Poli, D.; Caravaggi, I. Digital Surface Modelling and 3D Information Extraction From Spaceborne Very
High Resolution Stereo Pairs. Available online: http://publications.jrc.ec.europa.eu/repository/bitstream/
JRC68848/lbna25234enn.pdf (accessed on 25 August 2018).

4. Shi, W.; Tian, Y. A hybrid interpolation method for the refinement of a regular grid digital elevation model.
Int. J. Geogr. Inf. Sci. 2006, 20, 53–67. [CrossRef]

5. Yang, Q.; McVicar, T.R.; Van Niel, T.G.; Hutchinson, M.F.; Li, L.; Zhang, X. Improving a digital elevation
model by reducing source data errors and optimising interpolation algorithm parameters: An example in
the Loess Plateau, China. Int. J. App. Earth Obs. Geoinf. 2007, 9, 235–246. [CrossRef]

6. Karkee, M.; Steward, B.L.; Aziz, S.A. Improving quality of public domain digital elevation models through
data fusion. Biosyst. Eng. 2008, 101, 293–305. [CrossRef]

7. Wang, P. Applying Two Dimensional Kalman Filtering for Digital Terrain Modelling. Available
online: https://pdfs.semanticscholar.org/b75e/4787d497a6fc5becb500f895ebe7df3c9d66.pdf (accessed on
25 August 2018).

8. Zhen, X.; Huang, X.; Kwoh, L.K. Extracting DEM from SPOT stereo images. In Proceedings of the 22nd
Asian Conference of Remote Sensing, Singapore, 5–9 November 2001; pp. 5–9.

9. Laina, I.; Rupprecht, C.; Belagiannis, V.; Tombari, F.; Navab, N. Deeper depth prediction with fully
convolutional residual networks. In Proceedings of the 2016 Fourth International Conference on 3D Vision
(3DV), Stanford, CA, USA, 25–28 October 2016; pp. 239–248.

10. Li, J.; Klein, R.; Yao, A. A two-streamed network for estimating fine-scaled depth maps from single rgb
images. In Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Italy, 22–29
October 2017; pp. 22–29.

11. Reed, S.; Akata, Z.; Yan, X.; Logeswaran, L.; Schiele, B.; Lee, H. Generative adversarial text to image synthesis.
arXiv 2016, arXiv:1605.05396.

12. Huang, H.; Yu, P.S.; Wang, C. An Introduction to Image Synthesis with Generative Adversarial Nets.
arXiv 2018, arXiv:1803.04469.

13. Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.P.; Tejani, A.; Totz, J.;
Wang, Z.; et al. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA,
21–26 July 2017; Volume 2, p. 4.

14. Vondrick, C.; Pirsiavash, H.; Torralba, A. Generating videos with scene dynamics. Advances in Neural
Information Processing Systems; MIT Press: Cambridge, MA, USA, 2016; pp. 613–621.

15. Schlegl, T.; Seeböck, P.; Waldstein, S.M.; Schmidt-Erfurth, U.; Langs, G. Unsupervised anomaly detection
with generative adversarial networks to guide marker discovery. In Proceedings of the International
Conference on Information Processing in Medical Imaging, Boone, NC, USA, 2–7 June 2017; pp. 146–157.

http://pdfs.semanticscholar.org/e066/f8a278f845bf2cb19c9b4e81ec4dde1e1131.pdf
http://pdfs.semanticscholar.org/e066/f8a278f845bf2cb19c9b4e81ec4dde1e1131.pdf
http://dx.doi.org/10.5721/EuJRS20134635
http://publications.jrc.ec.europa.eu/repository/bitstream/JRC68848/lbna25234enn.pdf
http://publications.jrc.ec.europa.eu/repository/bitstream/JRC68848/lbna25234enn.pdf
http://dx.doi.org/10.1080/13658810500286943
http://dx.doi.org/10.1016/j.jag.2006.08.004
http://dx.doi.org/10.1016/j.biosystemseng.2008.09.010
https://pdfs.semanticscholar.org/b75e/4787d497a6fc5becb500f895ebe7df3c9d66.pdf


Remote Sens. 2018, 10, 1926 19 of 20

16. Wu, J.; Zhang, C.; Xue, T.; Freeman, B.; Tenenbaum, J. Learning a probabilistic latent space of object shapes
via 3D generative-adversarial modeling. In Proceedings of the Advances in Neural Information Processing
Systems, Barcelona, Spain, 5–10 December 2016; pp. 82–90.

17. Smith, E.; Meger, D. Improved adversarial systems for 3D object generation and reconstruction. arXiv 2017,
arXiv:1707.09557.

18. Yang, B.; Wen, H.; Wang, S.; Clark, R.; Markham, A.; Trigoni, N. 3D object reconstruction from a single depth
view with adversarial learning. arXiv 2017, arXiv:1708.07969.

19. Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks.
arXiv 2016, arXiv:1611.07004.

20. Georgopoulos, A.; Skarlatos, D. A novel method for automating the checking and correction of digital
elevation models using orthophotographs. Photogramm. Rec. 2003, 18, 156–163. [CrossRef]

21. Amitabh, A.; Vijayvargiya, B.; GopalaKrishna, P.; Srivastava, K. Iterative automatic technique for refinement
of DEM and orthoimages. In Proceedings of the 8th Map India International Conference, Pune, India, 20–22
December 2005; pp. 7–9.

22. Walker, J.P.; Willgoose, G.R. A comparative study of Australian cartometric and photogrammetric digital
elevation model accuracy. Photogramm. Eng. Remote Sens. 2006, 72, 771–779. [CrossRef]

23. Felicísimo, A.M. Parametric statistical method for error detection in digital elevation models. ISPRS J.
Photogramm. Remote Sens. 1994, 49, 29–33. [CrossRef]

24. Sirmacek, B.; d’Angelo, P.; Krauss, T.; Reinartz, P. Enhancing Urban Digital Elevation Models Using Automated
Computer Vision Techniques; ISPRS: Stuttgart, Germany, 2010.

25. Sirmacek, B.; d’Angelo, P.; Reinartz, P. Detecting complex building shapes in panchromatic satellite images
for digital elevation model enhancement. In Proceedings of the ISPRS Workshop on Modeling of Optical
Airborne and Space Borne Sensors, Citeseer, Istanbul, Turkey, 11–13 October 2010.

26. Krauß, T.; Reinartz, P. Enhancement of dense urban digital surface models from VHR optical satellite stereo
data by pre-segmentation and object detection. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2010, 38, 6.

27. Eigen, D.; Puhrsch, C.; Fergus, R. Depth map prediction from a single image using a multi-scale deep
network. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada,
8–13 December 2014; pp. 2366–2374.

28. Eigen, D.; Fergus, R. Predicting depth, surface normals and semantic labels with a common multi-scale
convolutional architecture. In Proceedings of the IEEE International Conference on Computer Vision,
Santiago, Chile, 7–13 December 2015; pp. 2650–2658.

29. Liu, F.; Shen, C.; Lin, G. Deep convolutional neural fields for depth estimation from a single image.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA,
7–12 June 2015; pp. 5162–5170.

30. Zhu, J.; Ma, R. Real-Time Depth Estimation from 2D Images. Available online: http://cs231n.stanford.edu/
reports/2016/pdfs/407_Report.pdf (accessed on 25 August 2018).

31. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014,
arXiv:1409.1556.

32. Jeon, J.; Lee, S. Reconstruction-based Pairwise Depth Dataset for Depth Image Enhancement Using CNN. In
Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September
2018; pp. 422–438.

33. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y.
Generative adversarial nets. In Proceedings of the Advances in Neural Information Processing Systems,
Montreal, QC, Canada, 8–13 December 2014; pp. 2672–2680.

34. Choy, C.B.; Xu, D.; Gwak, J.; Chen, K.; Savarese, S. 3D-R2N2: A unified approach for single and multi-view
3D object reconstruction. In Proceedings of the European Conference on Computer Vision, Amsterdam,
The Netherlands, 8–16 October 2016; pp. 628–644.

35. Dai, A.; Qi, C.R.; Nießner, M. Shape completion using 3D-encoder-predictor cnns and shape synthesis.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI,
USA, 21–26 July 2017; Volume 3.

36. Rezende, D.J.; Eslami, S.A.; Mohamed, S.; Battaglia, P.; Jaderberg, M.; Heess, N. Unsupervised learning
of 3D structure from images. In Proceedings of the Advances in Neural Information Processing Systems,
Barcelona, Spain, 5–10 December 2016; pp. 4996–5004.

http://dx.doi.org/10.1111/0031-868X.t01-1-00015
http://dx.doi.org/10.14358/PERS.72.7.771
http://dx.doi.org/10.1016/0924-2716(94)90044-2
http://cs231n.stanford.edu/reports/2016/pdfs/407_Report.pdf
http://cs231n.stanford.edu/reports/2016/pdfs/407_Report.pdf


Remote Sens. 2018, 10, 1926 20 of 20

37. Mirza, M.; Osindero, S. Conditional generative adversarial nets. arXiv 2014, arXiv:1411.1784.
38. Guo, Y.X.; Tong, X. View-volume Network for Semantic Scene Completion from a Single Depth Image.

arXiv 2018, arXiv:1806.05361.
39. Bittner, K.; d’Angelo, P.; Körner, M.; Reinartz, P. Automatic Large-Scale 3D Building Shape Refinement Using

Conditional Generative Adversarial Networks. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
2018, 422, 103–108. [CrossRef]

40. Bittner, K.; Körner, M. Automatic Large-Scale 3D Building Shape Refinement Using Conditional Generative
Adversarial Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, Salt Lake City, Utah, 18–22 June 2018; pp. 2000–2002.

41. Gröger, G.; Kolbe, T.; Nagel, C.; Häfele, K. OGC City Geography Markup Language (CityGML)
Encoding Standard, Version 2.0, OGC doc no. 12-019. Available online: https://www.google.
com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=8&cad=rja&uact=8&ved=2ahUKEwjuxKi5_
_reAhUMwLwKHVcHBU0QFjAHegQICBAC&url=https%3A%2F%2Fportal.opengeospatial.org%2Ffiles%
2F%3Fartifact_id%3D47842&usg=AOvVaw2wSGg9aGHeIRQc8wQe3Vug (accessed on 25 August 2018).

42. Mao, X.; Li, Q.; Xie, H.; Lau, R.Y.; Wang, Z.; Smolley, S.P. Least squares generative adversarial networks.
In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29
October 2017; pp. 2813–2821.

43. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation.
In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted
Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241.

44. Shewchuk, J.R. Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator. In Applied
Computational Geometry Towards Geometric Engineering; Springer: Berlin, Germany, 1996; pp. 203–222.

45. Delaunay, B.N. Sur la Sphère Vide. Bull. Acad. Sci. USSR 1934, 7, 793–800.
46. D’Angelo, P.; Reinartz, P. Semiglobal matching results on the ISPRS stereo matching benchmark. ISPRS

Hann. Works. 2011, 38, 79–84. [CrossRef]
47. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
48. Höhle, J.; Höhle, M. Accuracy assessment of digital elevation models by means of robust statistical methods.

ISPRS J. Photogramm. Remote Sens. 2009, 64, 398–406. [CrossRef]
49. Mao, X.; Li, Q.; Xie, H.; Lau, R.Y.; Wang, Z.; Smolley, S.P. On the Effectiveness of Least Squares Generative

Adversarial Networks. arXiv 2017, arXiv:1712.06391.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.5194/isprs-archives-XLII-2-103-2018
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=8&cad=rja&uact=8&ved=2ahUKEwjuxKi5__reAhUMwLwKHVcHBU0QFjAHegQICBAC&url=https%3A%2F%2Fportal.opengeospatial.org%2Ffiles%2F%3Fartifact_id%3D47842&usg=AOvVaw2wSGg9aGHeIRQc8wQe3Vug
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=8&cad=rja&uact=8&ved=2ahUKEwjuxKi5__reAhUMwLwKHVcHBU0QFjAHegQICBAC&url=https%3A%2F%2Fportal.opengeospatial.org%2Ffiles%2F%3Fartifact_id%3D47842&usg=AOvVaw2wSGg9aGHeIRQc8wQe3Vug
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=8&cad=rja&uact=8&ved=2ahUKEwjuxKi5__reAhUMwLwKHVcHBU0QFjAHegQICBAC&url=https%3A%2F%2Fportal.opengeospatial.org%2Ffiles%2F%3Fartifact_id%3D47842&usg=AOvVaw2wSGg9aGHeIRQc8wQe3Vug
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=8&cad=rja&uact=8&ved=2ahUKEwjuxKi5__reAhUMwLwKHVcHBU0QFjAHegQICBAC&url=https%3A%2F%2Fportal.opengeospatial.org%2Ffiles%2F%3Fartifact_id%3D47842&usg=AOvVaw2wSGg9aGHeIRQc8wQe3Vug
http://dx.doi.org/10.5194/isprsarchives-XXXVIII-4-W19-79-2011
http://dx.doi.org/10.1016/j.isprsjprs.2009.02.003
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Methodology
	Objective
	Network Architecture
	gl:LoD2-gl:DSM Ground Truth Data Generation

	Study Area and Experiments
	Implementation and Training Details
	Training Process
	Inference Process

	Evaluation Metrics

	Results and Discussion
	gl:cGAN vs. gl:cLSGAN
	Model Generalization Capability

	Conclusions
	References

