elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Machbarkeitsstudie des L-BFGS Verfahrens für das Training von Deep Learning Problemen

Shonia, Ilona (2018) Machbarkeitsstudie des L-BFGS Verfahrens für das Training von Deep Learning Problemen. WAW - Machine Learning 3, 2018-11-19 - 2018-11-20, Köln, Deutschland. (Submitted)

[img] PDF
770kB

Item URL in elib:https://elib.dlr.de/124419/
Document Type:Conference or Workshop Item (Speech)
Title:Machbarkeitsstudie des L-BFGS Verfahrens für das Training von Deep Learning Problemen
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Shonia, IlonaUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Date:2018
Refereed publication:No
Open Access:Yes
Gold Open Access:No
In SCOPUS:No
In ISI Web of Science:No
Status:Submitted
Keywords:Optimierungsalgorithmen, Deep Learning, Stochastische Quasi-Newton Methode, MB-LBFGS, PB-LBFGS
Event Title:WAW - Machine Learning 3
Event Location:Köln, Deutschland
Event Type:Workshop
Event Start Date:19 November 2018
Event End Date:20 November 2018
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Space System Technology
DLR - Research area:Raumfahrt
DLR - Program:R SY - Space System Technology
DLR - Research theme (Project):R - Vorhaben SISTEC (old)
Location: Köln-Porz
Institutes and Institutions:Institut of Simulation and Software Technology > High Performance Computing
Deposited By: Shonia, Ilona
Deposited On:06 Dec 2018 14:25
Last Modified:24 Apr 2024 20:28

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.