elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Detecting Severe Weather Trends Using an Additive Regressive Convective Hazard Model (AR-CHaMo)

Rädler, Anja und Groenemeijer, Pieter und Faust, Eberhard und Sausen, Robert (2018) Detecting Severe Weather Trends Using an Additive Regressive Convective Hazard Model (AR-CHaMo). Journal of Applied Meteorology and Climatology, 57, Seiten 569-587. American Meteorological Society. doi: 10.1175/JAMC-D-17-0132.1. ISSN 1558-8424.

[img] PDF
3MB

Offizielle URL: https://journals.ametsoc.org/doi/pdf/10.1175/JAMC-D-17-0132.1

Kurzfassung

A statistical model for the occurrence of convective hazards was developed and applied to reanalysis data to detect multidecadal trends in hazard frequency. The modeling framework is based on an additive logistic regression for observed hazards that exploits predictors derived from numerical model data. The regression predicts the probability of a severe hazard, which is considered as a product of two components: the probability that a storm occurs and the probability of the severe hazard, given the presence of a storm [P(severe) 5 P(storm) 3 P(severejstorm)]. The model was developed using lightning data as an indication of thunderstorm occurrence and hazard reports across central Europe. Although it uses only two predictors per component, it is capable of reproducing the observed spatial distribution of lightning and yields realistic annual cycles of lightning, hail, and wind fairly accurately. The model was applied to ERA-Interim (1979–2016) across Europe to detect any changes in lightning, hail, and wind hazard occurrence. The frequency of conditions favoring lightning, wind, and large hail has increased across large parts of Europe, with the exception of the southwest. The resulting predicted occurrence of 6-hourly periods with lightning, wind, and large hail has increased by 16%, 29%, and 41%, respectively, across western and central Europe and by 23%, 56%, and 86% across Germany and the Alps during the period considered. It is shown that these changes are caused by increased instability in the reanalysis rather than by changes in midtropospheric moisture or wind shear.

elib-URL des Eintrags:https://elib.dlr.de/124244/
Dokumentart:Zeitschriftenbeitrag
Zusätzliche Informationen:Please note the AMS copyright policy, available under https://www.ametsoc.org/ams/index.cfm/publications/ethical-guidelines-and-ams-policies/open-access-for-ams-journals-and-bams/
Titel:Detecting Severe Weather Trends Using an Additive Regressive Convective Hazard Model (AR-CHaMo)
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Rädler, AnjaMunich Re, Münchenhttps://orcid.org/0000-0002-5051-1920NICHT SPEZIFIZIERT
Groenemeijer, PieterESSL, Oberpfaffenhofenhttps://orcid.org/0000-0002-4223-5831NICHT SPEZIFIZIERT
Faust, EberhardMunich Re, Münchenhttps://orcid.org/0000-0003-0036-9919NICHT SPEZIFIZIERT
Sausen, RobertDLR, IPAhttps://orcid.org/0000-0002-9572-2393NICHT SPEZIFIZIERT
Datum:2018
Erschienen in:Journal of Applied Meteorology and Climatology
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:57
DOI:10.1175/JAMC-D-17-0132.1
Seitenbereich:Seiten 569-587
Verlag:American Meteorological Society
ISSN:1558-8424
Status:veröffentlicht
Stichwörter:severe weather, statistics, extreme weather, lightning
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Verkehrssystem
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V VS - Verkehrssystem
DLR - Teilgebiet (Projekt, Vorhaben):V - Verkehrsentwicklung und Umwelt II (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Physik der Atmosphäre > Erdsystem-Modellierung
Hinterlegt von: Sausen, Prof.Dr. Robert
Hinterlegt am:05 Dez 2018 10:01
Letzte Änderung:06 Sep 2019 15:19

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.