Zhuo, Xiangyu und Fraundorfer, Friedrich und Kurz, Franz und Reinartz, Peter (2018) Building detection and segmentation using a CNN with automatically generated training data. In: 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 3461-3464. IGARSS 2018, 2018-07-22 - 2018-07-27, Valencia, Spanien. doi: 10.1109/igarss.2018.8518521.
PDF
10MB |
Offizielle URL: https://www.igarss2018.org/default.asp
Kurzfassung
Significantly outperforming traditional machine learning methods, deep convolutional neural networks have gained increasing popularity in the application of image classification and segmentation. Nevertheless, deep learning-based methods usually require a large amount of training data, which is quite labor-intensive and time-demanding. To deal with the problem in generating training data, we propose in this paper a novel approach to generate image annotations by transferring labels from aerial images to UAV images and refine the annotations using a densely connected CRF model with an embedded naive Bayes classifier. The generated annotations not only present correct semantic labels, but also preserve accurate class boundaries. To validate the utility of these automatic annotations, we deploy them as training data for pixel-wise image segmentation and compare the results with the segmentation using manual annotations. Experiment results demonstrate that the automatic annotations can achieve comparable segmentation accuracy as the manual annotations.
elib-URL des Eintrags: | https://elib.dlr.de/123995/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Building detection and segmentation using a CNN with automatically generated training data | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | Juli 2018 | ||||||||||||||||||||
Erschienen in: | 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
DOI: | 10.1109/igarss.2018.8518521 | ||||||||||||||||||||
Seitenbereich: | Seiten 3461-3464 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Image segmentation, Automatic image annotation, Label propagation, Deep learning | ||||||||||||||||||||
Veranstaltungstitel: | IGARSS 2018 | ||||||||||||||||||||
Veranstaltungsort: | Valencia, Spanien | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 22 Juli 2018 | ||||||||||||||||||||
Veranstaltungsende: | 27 Juli 2018 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||
HGF - Programmthema: | Verkehrsmanagement (alt) | ||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||
DLR - Forschungsgebiet: | V VM - Verkehrsmanagement | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - Vabene++ (alt) | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||||||
Hinterlegt von: | Zielske, Mandy | ||||||||||||||||||||
Hinterlegt am: | 30 Nov 2018 14:42 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:27 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags