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ABSTRACT

Significantly outperforming traditional machine
learning methods, deep convolutional neural net-
works have gained increasing popularity in the ap-
plication of image classification and segmentation.
Nevertheless, deep learning-based methods usually
require a large amount of training data, which is
quite labor-intensive and time-demanding. To deal
with the problem in generating training data, we
propose in this paper a novel approach to gener-
ate image annotations by transferring labels from
aerial images to UAV images and refine the annota-
tions using a densely connected CRF model with an
embedded naive Bayes classifier. The generated an-
notations not only present correct semantic labels,
but also preserve accurate class boundaries. To val-
idate the utility of these automatic annotations, we
deploy them as training data for pixel-wise image
segmentation and compare the results with the seg-
mentation using manual annotations. Experiment
results demonstrate that the automatic annotations
can achieve comparable segmentation accuracy as
the manual annotations.

Index Terms— Image segmentation, Automatic
image annotation, Label propagation, Deep learning

1. INTRODUCTION

As one of the hottest topic in machine learning re-
search, deep learning has been widely applied in
image classification and segmentation and demon-
strated significant improvement compared to tra-
ditional machine learning methods. Nevertheless,

a large number of ground truth annotations are
required to train the deep convolutional neural
networks. Though there are several open image
databases like ImageNet[1] and LabelMeFacade[2],
they are only applicable for specific scenes. When
it comes to the applications in photogrammetry and
remote sensing, it is usually inevitable to create an-
notations manually, which costs plenty of time and
labor.

In order to tackle the lack of training data, a cou-
ple of attempts have been made in automatic gener-
ation of image annotations. [3] proposed to gen-
erate synthetic images with pixel-level annotations,
but this method relies on rich generative models to
generate new and distinctive annotations. Video-
based algorithms [4] propagate the labels of anno-
tated frames to neighboring frames, however, such
methods are vulnerable to occlusions of different
classes. Some methods exploit LiDAR point cloud
or 3D reconstruction of the scene as an intermediary.
[5] proposed to transfer labels from 3D to 2D, i.e.,
manually annotate a point cloud in 3D domain and
then project the labels back into 2D domain. The
results are promising, however, the task of labeling
the point cloud is still indispensable and quite la-
bor intensive. Considering the fact that aerial im-
ages usually have much larger coverage than UAV
images, we seek to propagate the labels from one
aerial image to multiple co-registered UAV image
and the UAV point cloud. Theoretically, we simply
need to annotate one aerial image manually and then
transfer the labels to numerous co-registered UAV
images of the same area. To this goal, we propose
in this paper a new pipeline for automatic image an-
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notation generation. This approach consists of three
steps: 1. label one or two aerial images manually;
2. transfer the pixel labels to multiple UAV images
via the UAV point cloud; 3.refine the generated an-
notations with a densely connected CRF model and
a naive Bayes classifier. To validate the accuracy of
automatically generated annotations, we also train
a deep convolutional neural network with the auto-
matic annotations for image segmentation and com-
pare the performance with manual annotations.

2. METHODOLOGY

2.1. Annotation

Main differences between aerial imagery and UAV
imagery lie in their resolution, scale and viewing di-
rections. Due to occlusion, one aerial image may
not contain the same objects as UAV images, e.g.,
the building facades. In order to exploit the com-
plete information from the oblique view aerial im-
ages, we label two aerial images from the surveying
area, one is left-view and the other is right-view, de-
noted by Il and Ir respectively. Figure 1 depicts an
oblique UAV imagery and the corresponding region
in the left-view and right-view aerial images. It can
be seen that the combination of the two views con-
tribute to complete representation of the scene.

In our case, the interesting categories are Build-
ing, Roof, Ground, Vegetation and Car, while the
indistinguishable objects are labeled as Clutter and
will not be involved in segmentation. The labels
are then transferred from aerial images to UAV im-
ages via the point cloud reconstructed from UAV
images, i.e., we project all the 3D points into a la-
beled aerial image, thus all the non-occluded points
get labeled, and then we project the 3D points into
UAV images, transferring their labels to correspond-
ing pixels. Figure 2 (a), (b) show a UAV image with
labels transferred from left-view aerial image and
right-view aerial image respectively. It needs to be
noted that occlusions and moving cars result in la-
bel inconsistence at some areas, to tackle this prob-
lem, we propose to refine the raw annotations with
the joint reasoning of pixel information in the im-
age and auxiliary 3D information of the UAV point

cloud.

(a) (b) (c)

Fig. 1: Comparison of oblique aerial imagery and
oblique UAV imagery. (a) is the UAV image, (b)
and (c) show the corresponding region in the left-
view and right-view aerial images

(a) (b)

Fig. 2: Raw UAV image annotation with labels
transferred from aerial images. (a) is transferred
from the left-view aerial image and (b) from the
right-view

2.2. Model

Let X denote a random field over a set of variables
{X1, X2, ..., XN} and the domain of each variable
Xi is a set of semantic labels L = {l1, l2, ..., lk}.
The Gibbs energy function of a label x ∈ LN is:

E (x) =
N∑
i

ψu (xi) +
N∑
i<j

ϕp (xi, xj) (1)

The unary potentials ψu (·) feature the probabil-
ity of a pixel taking label xi. In our case, the pixel-
wise probability P (xi) is initially derived from the
transferred labels of UAV images. Due to occlu-
sions, however, some pixels may have wrong labels,
no labels or multiple labels, especially for classes
Building and Car. To solve this problem, we ex-
ploit geometric information embedded in 3D points
such as height and normal vectors. At ambiguous
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regions, these complimentary cues can help to dis-
tinguish different classes. More specifically, con-
sider a set O defined over possible observation val-
ues, in our case the height value. Let P (O | xi) be
the prior probability distribution of O defined based
on image statistics. The likelihood of pixel i taking
label si given the observation O can be obtained via
a naive Bayes classifier:

ϕp (xi | O) =
P (O | xi)P (xi)

P (O)
(2)

For the sake of notation convenience, we will use
ϕp (xi) instead of ϕp (xi | O) in the following text.
Pairwise potentials ϕp(·) encode the semantic label
coherence of pixels. We adopt the contrast-sensitive
Gaussian edge kernels as pairwise term, which have
the form:

ϕp (xi, xj) = ω1 (xi, xj) exp

(
−| pi − pj |

2

2θγ
2

)
+ω2 (xi, xj) exp

(
−| pi − pj |

2

2θα
2 − | Ii − Ij |

2

2θβ
2

)
(3)

Where Ii is the color vector of pixel i and pi de-
note its position. θα, θβ and θγ control the degree
of nearness, similarity and smoothness. The param-
eter values in our experiment are 20, 8, 3 respec-
tively. In the end, the parameters in our CRF model
are learned via minimization of the Gibbs energy
defined in Eq. 1

3. EXPERIMENTAL RESULTS

3.1. Generated annotation

We performed learning and inference of the CRF
model based on the implementation of [6] 1. Figure
3 depicts the automatically generated annotation in
comparison with the manually labeled annotation. It
can be seen that the automatic annotation not only
present correct semantic labels, but also preserve ac-
curate class boundaries.

1https://github.com/lucasb-eyer/pydensecrf

(a) (b) (c)

Fig. 3: Comparison of transferred annotations with
manual annotations. (a) is automatic annotation and
(c) is manual annotation, (b) is corresponding UAV
image

3.2. Image segmentation with generated annota-
tions

In order to validate the utility of the automatically
generated annotations, we use them as training data
for image semantic segmentation using a deep con-
volutional neural network and compare the perfor-
mance with the segmentation using manual anno-
tations. To be specific, we select 19 generated an-
notations featuring different regions of the survey
site. In order to enrich the training data, we augment
the annotations by scaling and rotating, resulting
in around 8208 images with the size of 300×300.
The corresponding manual annotations are also aug-
mented in the same way with the same parameters.

The learning procedure is implemented under
the deep learning framework Caffe. We fined tune
the FCN-8s model [7] 2 with our dataset. Besides,
we plug in the CRF-RNN [8] 3 layer in order to
achieve sharp edges at class borders. Figure 4 shows
the segmentation result of the trained network on
the test data. Where, (a) shows the segmentation re-
sults using automatic annotations, (c) illustrates the
results using manual annotations and (b) is the cor-
responding ground truth. The accuracy of each class
is listed in Table 1. It can be seen that the segmenta-
tion using the automatic annotations achieves com-
parable accuracy with the segmentation using man-
ual annotations.

2https://github.com/shelhamer/fcn.berkeleyvision.org
3https://github.com/torrvision/crfasrnn
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(a) (b) (c)

Fig. 4: Comparison of segmentation results. (a)
is the segmentation result using automatic annota-
tions, (c) is the segmentation using manual annota-
tions, (b) is the corresponding ground truth.

Table 1: Segmentation accuracy (IoU) comparison
between automatic annotations (A) and manual an-
notations (M).

Building Roof Ground Car Veg
A 89.47 48.11 96.14 35.30 77.98
M 87.49 50.64 96.34 41.77 77.81

4. CONCLUSION

In this paper, we propose a novel approach to gen-
erate image annotations by transferring labels from
aerial images to UAV images. Due to occlusion
and inaccuracy of manual annotation, the trans-
ferred annotation may carry incomplete or wrong
information, we refine the raw annotations using a
densely connected CRF model with an embedded
naive Bayes classifier. The generated annotations
not only present correct semantic labels, but also
preserve accurate class boundaries. To validate
the effectiveness of the generated annotations, we
deploy them as ground truth data in image seg-
mentation. Experiment results demonstrate that the
segmentation performance using the automatic an-
notations is comparable with manual annotations
while saving the manual labor and time dramat-
ically. The proposed method can be effectively
applied in automatic generation of training data.
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