Denninger, Maximilian und Triebel, Rudolph (2018) Persistent Anytime Learning of Objects from Unseen Classes. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2018. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2018), 2018-10-01 - 2018-10-05, Madrid, Spain. doi: 10.1109/iros.2018.8594165. ISBN 978-153868094-0. ISSN 2153-0858.
PDF
982kB |
Kurzfassung
We present a fast and very effective method for object classification that is particularly suited for robotic applications such as grasping and semantic mapping. Our approach is based on a Random Forest classifier that can be trained incrementally. This has the major benefit that semantic information from new data samples can be incorporated without retraining the entire model. Even if new samples from a previously unseen class are presented, our method is able to perform efficient updates and learn a sustainable representation for this new class. Further features of our method include a very fast and memory-efficient implementation, as well as the ability to interrupt the learning process at any time without a significant performance degradation. Experiments on benchmark data for robotic applications show the clear benefits of our incremental approach and its competitiveness with standard offline methods in terms of classification accuracy.
elib-URL des Eintrags: | https://elib.dlr.de/123987/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Anderer) | ||||||||||||
Titel: | Persistent Anytime Learning of Objects from Unseen Classes | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 1 Oktober 2018 | ||||||||||||
Erschienen in: | 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2018 | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Ja | ||||||||||||
DOI: | 10.1109/iros.2018.8594165 | ||||||||||||
ISSN: | 2153-0858 | ||||||||||||
ISBN: | 978-153868094-0 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Learning and Adaptive Systems, Object Detection, Segmentation and Categorization, Online Learning, Random Forest | ||||||||||||
Veranstaltungstitel: | IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2018) | ||||||||||||
Veranstaltungsort: | Madrid, Spain | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsbeginn: | 1 Oktober 2018 | ||||||||||||
Veranstaltungsende: | 5 Oktober 2018 | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben Multisensorielle Weltmodellierung (alt) | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition | ||||||||||||
Hinterlegt von: | Denninger, Maximilian | ||||||||||||
Hinterlegt am: | 30 Nov 2018 14:39 | ||||||||||||
Letzte Änderung: | 24 Apr 2024 20:27 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags