elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Machine learning approach to predict aircraft boarding

Schultz, Michael und Reitmann, Stefan (2018) Machine learning approach to predict aircraft boarding. Transportation Research Part C: Emerging Technologies. Elsevier. doi: 10.1016/j.trc.2018.09.007. ISSN 0968-090X.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Reliable and predictable ground operations are essential for punctual air traffic movements. Uncertainties in the airborne phase have significantly less impact on flight punctuality than deviations in aircraft ground operations. The ground trajectory of an aircraft primarily consists of the handling processes at the stand, defined as the aircraft turnaround, which are mainly controlled by operational experts. Only the aircraft boarding, which is on the critical path of the turnaround, is driven by the passengers' experience and willingness or ability to follow the proposed procedures. We used a recurrent neural network approach to predict the progress of a running boarding event. In particular, we implemented and trained the Long Short-Term Memory model. Since no operational data of the specific passenger behavior is available, we used a reliable, validated boarding simulation environment to provide data about the aircraft boarding events. First predictions show that uni-variate input (seat load progress) produces insufficient results, so we consider expected passenger interactions in the aircraft cabin as well. These interactions are aggregated to a prior-developed complexity metric and allow an efficient evaluation of the current boarding progress. With this multi-variate input, our Long Short-Term Memory model achieves appropriate prediction results for the boarding progress.

elib-URL des Eintrags:https://elib.dlr.de/123471/
Dokumentart:Zeitschriftenbeitrag
Titel:Machine learning approach to predict aircraft boarding
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Schultz, MichaelMichael.Schultz (at) dlr.dehttps://orcid.org/0000-0003-4056-8461NICHT SPEZIFIZIERT
Reitmann, StefanStefan.Reitmann (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2018
Erschienen in:Transportation Research Part C: Emerging Technologies
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.1016/j.trc.2018.09.007
Verlag:Elsevier
ISSN:0968-090X
Status:veröffentlicht
Stichwörter:machine learning; prediction; turnaround; aircraft boarding
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Luftverkehrsmanagement und Flugbetrieb
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L AO - Air Traffic Management and Operation
DLR - Teilgebiet (Projekt, Vorhaben):L - Luftverkehrskonzepte und Betrieb (alt)
Standort: Braunschweig
Institute & Einrichtungen:Institut für Flugführung > Luftverkehrssysteme
Hinterlegt von: Schultz, Dr. Michael
Hinterlegt am:27 Nov 2018 12:02
Letzte Änderung:08 Nov 2023 14:47

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.