elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Building Footprint Extraction From VHR Remote Sensing Images Combined With Normalized DSMs Using Fused Fully Convolutional Networks

Bittner, Ksenia und Adam, Fathalrahman und Cui, Shiyong und Körner, Marco und Reinartz, Peter (2018) Building Footprint Extraction From VHR Remote Sensing Images Combined With Normalized DSMs Using Fused Fully Convolutional Networks. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11 (8), Seiten 2615-2629. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2018.2849363. ISSN 1939-1404.

[img] PDF
22MB

Offizielle URL: https://ieeexplore.ieee.org/document/8447548?denied=

Kurzfassung

Automatic building extraction and delineation from high-resolution satellite imagery is an important but very challenging task, due to the extremely large diversity of building appearances. Nowadays, it is possible to use multiple high-resolution remote sensing data sources, which allow the integration of different information in order to improve the extraction accuracy of building outlines. Many algorithms are built on spectral-based or appearance-based criteria, from single or fused data sources, to perform the building footprint extraction. But the features for these algorithms are usually manually extracted, which limits their accuracy. Recently developed fully convolutional networks (FCNs), which are similar to normal convolutional neural networks (CNN), but the last fully connected layer is replaced by another convolution layer with a large "receptive field", quickly became the state-of-theart method for image recognition tasks, as they bring the possibility to perform dense pixelwise classification of input images. Based on these advantages, i.e., the automatic extraction of relevant features, and dense classification of images, we propose an end-to-end FCN, which effectively combines the spectral and height information from different data sources and automatically generates a full resolution binary building mask. Our architecture (FUSED-FCN4S) consists of three parallel networks merged at a late stage, which helps propagating fine detailed information from earlier layers to higher levels, in order to produce an output with more accurate building outlines. The inputs to the proposed Fused-FCN4s are three-band (RGB), panchromatic (PAN), and normalized digital surface model (nDSM) images. Experimental results demonstrate that the fusion of several networks is able to achieve excellent results on complex data. Moreover, the developed model was successfully applied to different cities to show its generalization capacity.

elib-URL des Eintrags:https://elib.dlr.de/122645/
Dokumentart:Zeitschriftenbeitrag
Titel:Building Footprint Extraction From VHR Remote Sensing Images Combined With Normalized DSMs Using Fused Fully Convolutional Networks
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Bittner, KseniaKsenia.Bittner (at) dlr.dehttps://orcid.org/0000-0002-4048-3583NICHT SPEZIFIZIERT
Adam, FathalrahmanTUMNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Cui, ShiyongRemote Sensing Technology Institute (IMF)https://orcid.org/0000-0002-5417-4482NICHT SPEZIFIZIERT
Körner, Marcomarco.koerner (at) tum.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Reinartz, Peterpeter.reinartz (at) dlr.dehttps://orcid.org/0000-0002-8122-1475NICHT SPEZIFIZIERT
Datum:August 2018
Erschienen in:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:11
DOI:10.1109/JSTARS.2018.2849363
Seitenbereich:Seiten 2615-2629
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:1939-1404
Status:veröffentlicht
Stichwörter:Binary classification, building footprint, data fusion, deep learning, fully convolutional networks (FCNs), satellite images
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Verkehrsmanagement (alt)
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V VM - Verkehrsmanagement
DLR - Teilgebiet (Projekt, Vorhaben):V - Vabene++ (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von: Zielske, Mandy
Hinterlegt am:20 Nov 2018 10:46
Letzte Änderung:02 Nov 2023 09:55

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.