elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

An Augmented Linear Mixing Model to Address Spectral Variability for Hyperspectral Unmixing

Hong, Danfeng und Yokoya, Naoto und Chanussot, Jocelyn und Zhu, Xiao Xiang (2019) An Augmented Linear Mixing Model to Address Spectral Variability for Hyperspectral Unmixing. IEEE Transactions on Image Processing, 28 (4), Seiten 1923-1938. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TIP.2018.2878958. ISSN 1057-7149.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
5MB

Offizielle URL: https://ieeexplore.ieee.org/document/8528557

Kurzfassung

Hyperspectral imagery collected from airborne or satellite sources inevitably suffers from spectral variability, making it difficult for spectral unmixing to accurately estimate abundance maps. The classical unmixing model, the linear mixing model (LMM), generally fails to handle this sticky issue effectively. To this end, we propose a novel spectral mixture model, called the augmented linear mixing model (ALMM), to address spectral variability by applying a data-driven learning strategy in inverse problems of hyperspectral unmixing. The proposed approach models the main spectral variability (i.e., scaling factors) generated by variations in illumination or typography separately by means of the endmember dictionary. It then models other spectral variabilities caused by environmental conditions (e.g., local temperature and humidity, atmospheric effects) and instrumental configurations (e.g., sensor noise), as well as material nonlinear mixing effects, by introducing a spectral variability dictionary. To effectively run the data-driven learning strategy, we also propose a reasonable prior knowledge for the spectral variability dictionary, whose atoms are assumed to be low-coherent with spectral signatures of endmembers, which leads to a well-known low-coherence dictionary learning problem. Thus, a dictionary learning technique is embedded in the framework of spectral unmixing so that the algorithm can learn the spectral variability dictionary and estimate the abundance maps simultaneously. Extensive experiments on synthetic and real datasets are performed to demonstrate the superiority and effectiveness of the proposed method in comparison with previous state-of-the-art methods.

elib-URL des Eintrags:https://elib.dlr.de/122568/
Dokumentart:Zeitschriftenbeitrag
Titel:An Augmented Linear Mixing Model to Address Spectral Variability for Hyperspectral Unmixing
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Hong, Danfengdanfeng.hong (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Yokoya, NaotoRIKENNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Chanussot, JocelynInstitute Nationale Polytechnique de GrenobleNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Zhu, Xiao Xiangxiao.zhu (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:April 2019
Erschienen in:IEEE Transactions on Image Processing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:28
DOI:10.1109/TIP.2018.2878958
Seitenbereich:Seiten 1923-1938
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:1057-7149
Status:veröffentlicht
Stichwörter:Alternating direction method of multipliers, low-coherent dictionary learning, remote sensing, spectral unmixing, spectral variability.
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben hochauflösende Fernerkundungsverfahren (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Hong, Danfeng
Hinterlegt am:01 Nov 2018 13:46
Letzte Änderung:08 Nov 2023 09:42

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.