Hong, Danfeng und Yokoya, Naoto und Chanussot, Jocelyn und Zhu, Xiao Xiang (2019) CoSpace: Common Subspace Learning from Hyperspectral-Multispectral Correspondences. IEEE Transactions on Geoscience and Remote Sensing, 57 (7), Seiten 4349-4359. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2018.2890705. ISSN 0196-2892.
PDF
- Nur DLR-intern zugänglich
- Postprintversion (akzeptierte Manuskriptversion)
15MB |
Offizielle URL: https://ieeexplore.ieee.org/document/8672122
Kurzfassung
With a large amount of open satellite multispectral imagery (e.g., Sentinel-2 and Landsat-8), considerable attention has been paid to global multispectral land cover classification. However, its limited spectral information hinders further improving the classification performance. Hyperspectral imaging enables discrimination between spectrally similar classes but its swath width from space is narrow compared to multispectral ones. To achieve accurate land cover classification over a large coverage, we propose a cross-modality feature learning framework, called common subspace learning (CoSpace), by jointly considering subspace learning and supervised classification. By locally aligning the manifold structure of the two modalities, CoSpace linearly learns a shared latent subspace from hyperspectral-multispectral (HS-MS) correspondences. The multispectral out-of-samples can be then projected into the subspace, which are expected to take advantages of rich spectral information of the corresponding hyperspectral data used for learning, and thus leads to a better classification. Extensive experiments on two simulated HS-MS datasets (University of Houston and Chikusei), where HS-MS data sets have trade-offs between coverage and spectral resolution, are performed to demonstrate the superiority and effectiveness of the proposed method in comparison with previous state-of-the-art methods.
elib-URL des Eintrags: | https://elib.dlr.de/122307/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | CoSpace: Common Subspace Learning from Hyperspectral-Multispectral Correspondences | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | März 2019 | ||||||||||||||||||||
Erschienen in: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 57 | ||||||||||||||||||||
DOI: | 10.1109/TGRS.2018.2890705 | ||||||||||||||||||||
Seitenbereich: | Seiten 4349-4359 | ||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | common subspace learning, cross-modality learning, hyperspectral, landcover classification, multispectral, remote sensing. | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
Hinterlegt von: | Hong, Danfeng | ||||||||||||||||||||
Hinterlegt am: | 19 Okt 2018 13:34 | ||||||||||||||||||||
Letzte Änderung: | 08 Nov 2023 10:16 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags