elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

SULoRA: Subspace Unmixing with Low-Rank Attribute Embedding for Hyperspectral Data Analysis

Hong, Danfeng und Zhu, Xiao Xiang (2018) SULoRA: Subspace Unmixing with Low-Rank Attribute Embedding for Hyperspectral Data Analysis. IEEE Journal of Selected Topics in Signal Processing, 12 (6), Seiten 1351-1363. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTSP.2018.2877497. ISSN 1932-4553.

[img] PDF - Postprintversion (akzeptierte Manuskriptversion)
10MB

Offizielle URL: https://ieeexplore.ieee.org/document/8502105

Kurzfassung

To support high-level analysis of spaceborne imaging spectroscopy (hyperspectral) imagery, spectral unmixing has been gaining significance in recent years. However, from the inevitable spectral variability, caused by illumination and topography change, atmospheric effects and so on, makes it difficult to accurately estimate abundance maps in spectral unmixing. Classical unmixing methods, e.g. linear mixing model (LMM), extended linear mixing model (ELMM), fail to robustly handle this issue, particularly facing complex spectral variability. To this end, we propose a subspace-based unmixing model using low-rank learning strategy, called subspace unmixing with low-rank attribute embedding (SULoRA), robustly against spectral variability in inverse problems of hyperspectral unmixing. Unlike those previous approaches that unmix the spectral signatures directly in original space, SULoRA is a general subspace unmixing framework that jointly estimates subspace projections and abundance maps in order to find a ‘raw’ subspace which is more suitable for carrying out the unmixing procedure. More importantly, we model such ‘raw’ subspace with low-rank attribute embedding. By projecting the original data into a low-rank subspace, SULoRA can effectively address various spectral variabilities in spectral unmixing. Furthermore, we adopt an alternating direction method of multipliers (ADMM) based to solve the resulting optimization problem. Extensive experiments on synthetic and real datasets are performed to demonstrate the superiority and effectiveness of the proposed method in comparison with previous state-of-the-art methods.

elib-URL des Eintrags:https://elib.dlr.de/122305/
Dokumentart:Zeitschriftenbeitrag
Titel:SULoRA: Subspace Unmixing with Low-Rank Attribute Embedding for Hyperspectral Data Analysis
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Hong, Danfengdanfeng.hong (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Zhu, Xiao Xiangxiao.zhu (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Dezember 2018
Erschienen in:IEEE Journal of Selected Topics in Signal Processing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:12
DOI:10.1109/JSTSP.2018.2877497
Seitenbereich:Seiten 1351-1363
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:1932-4553
Status:veröffentlicht
Stichwörter:Alternating direction method of multipliers, hyperspectral data analysis, low-rank attribute embedding, remote sensing, subspace unmixing, spectral variability.
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben hochauflösende Fernerkundungsverfahren (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Hong, Danfeng
Hinterlegt am:19 Okt 2018 13:06
Letzte Änderung:31 Okt 2023 15:21

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.