elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Numerical simulation of cryogenic flows in rocket combustion chambers

Fechter, Stefan und Horchler, Tim und Karl, Sebastian und Hannemann, Klaus und Suslov, Dmitry und Hardi, Justin und Oschwald, Michael (2018) Numerical simulation of cryogenic flows in rocket combustion chambers. 2ND INTERNATIONAL SEMINAR ON NON-IDEAL COMPRESSIBLE-FLUID DYNAMICS FOR PROPULSION & POWER, 04.-05.10.2018, Bochum, Deutschland.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

The accurate numerical simulation of combustion and atomization processes in rocket combustion chambers is a key element for the design of future space transportation vehicles. The main challenges include the consistent approximation of thermodynamic effects within a broad range from cryogenic temperatures at the injection to high temperature within the flame. This broad temperature range combined with high-pressure conditions is challenging for the stability of the numerical method. Another numerical challenge is to resolve and/or model the disimilar length scales: First to mention is the accurate prediction of the jet breakup of the propellants (e.g. cryogenic oxygen and/or cryogenic hydrogen) and the cryogenic mixture. Second to mention are disimilar length scales between the liquid injection conditions (e.g. liquid oxygen) and the gaseous gases in the flame. In literature the numerical prediction of cryogenic injection processes is an open question how cryogenic sub- and supercritical injection process can be modeled (see e.\,g. the discussion in Oefelein and Bellan) and which physical processes are important to characterize the breakup and the evaporation processes correctly. At these conditions, as found e.\,g. in rocket combustion chambers, all fluid properties have a strong sensitivity to changes in the (non-linear) equation of state. One major challenge is the strong discontinuity in the flow field due to the phase boundary. Another open question is which are the main physical processes that have to be modeled for Reynolds Averaged Navier-Stokes (RANS) based ap proaches, similar to the single-phase turbulence modeling. These turbulence models are of practical importance as they are used to design and assure rocket combustion chambers with many design-type calculations. Detailed numerical simulations (Large Eddy or Direct Numerical Simulations) are still too expensive for those simulations and are used to understand the fundamental flow physics in detail, even the computational resources increased significantly in the last years. In this talk we discuss the numerical methodology to handle cryogenic flows in combustion chambers using a RANS based method. The numerical development is based on the DLR flow solver TAU for which some extensions are proposed that handle the mixture of cryogenic fluids. This includes the numerical framework for an efficient evaluation of cryogenic mixture states as well as state of the art mixture rules for viscosity and heat transfer coefficients. A double-f lux based numerical method is included to prevent spurious numerical oscillations in cryogenic mixture states as proposed by Ma et al. for trans-critical flows. The framework is validated with experimental results for a lab-scale combustion chamber experiment conducted at the DLR branch in Lampoldshausen. During the BKC test campaign a single-injector cryogenic combustion chamber was fired at several combustion chamber pressures ranging from sub- to supercritical conditions. The combustion chamber was fully equipped with OH* and shadowgraphic imaging aiming to provide extensive validation data for numerical meth ods. In addition wall temperature and pressure measurements on the outer combustion chamber walls are available.

elib-URL des Eintrags:https://elib.dlr.de/122265/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Numerical simulation of cryogenic flows in rocket combustion chambers
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Fechter, StefanStefan.Fechter (at) dlr.dehttps://orcid.org/0000-0001-5683-4715NICHT SPEZIFIZIERT
Horchler, TimTim.Horchler (at) dlr.dehttps://orcid.org/0000-0002-8439-8786NICHT SPEZIFIZIERT
Karl, SebastianSebastian.Karl (at) dlr.dehttps://orcid.org/0000-0002-5558-6673NICHT SPEZIFIZIERT
Hannemann, KlausKlaus.Hannemann (at) dlr.dehttps://orcid.org/0000-0002-9653-4087NICHT SPEZIFIZIERT
Suslov, DmitryDmitry.Suslov (at) dlr.dehttps://orcid.org/0000-0002-5160-9292NICHT SPEZIFIZIERT
Hardi, JustinJustin.Hardi (at) dlr.dehttps://orcid.org/0000-0003-3258-5261NICHT SPEZIFIZIERT
Oschwald, MichaelMichael.Oschwald (at) dlr.dehttps://orcid.org/0000-0002-9579-9825NICHT SPEZIFIZIERT
Datum:4 Oktober 2018
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Tau, Rocket Combustion Chamber, TwoPhaseFlow
Veranstaltungstitel:2ND INTERNATIONAL SEMINAR ON NON-IDEAL COMPRESSIBLE-FLUID DYNAMICS FOR PROPULSION & POWER
Veranstaltungsort:Bochum, Deutschland
Veranstaltungsart:internationale Konferenz
Veranstaltungsdatum:04.-05.10.2018
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Raumtransport
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R RP - Raumtransport
DLR - Teilgebiet (Projekt, Vorhaben):R - Projekt TAUROS (TAU for Rocket Thrust Chamber Simulation)
Standort: Göttingen , Lampoldshausen
Institute & Einrichtungen:Institut für Aerodynamik und Strömungstechnik > Raumfahrzeuge, GO
Institut für Raumfahrtantriebe > Raketenantriebe
Hinterlegt von: Fechter, Stefan
Hinterlegt am:17 Okt 2018 08:05
Letzte Änderung:23 Mär 2023 14:19

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.