elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Towards Forced Eddy Simulation of Airframe Induced Noise Radiation from Coherent Hydrodynamic Structures of Jet Flow

Neifeld, Andrej und Ewert, Roland (2018) Towards Forced Eddy Simulation of Airframe Induced Noise Radiation from Coherent Hydrodynamic Structures of Jet Flow. In: 24th AIAA/CEAS Aeroacoustics Conference, 2018 (3463). AIAA. AIAA Aviation Forum 2018, Atlanta, Georgia, USA. doi: 10.2514/6.2018-3463. ISBN 978-162410560-9.

[img] PDF - Nur DLR-intern zugänglich
9MB

Kurzfassung

The application of Forced Eddy Simulation (FES) is studied in the context of Direct Noise Computation of jet installation noise from nozzle-wing configurations with small relative distance between jet axis and wing trailing edge of the order of the nozzle diameter. Direct noise computations are performed solving the Navier-Stokes equations in perturbation form over a given background RANS flow to realize a zonal RANS/LES simulation approach in the Non-Linear Disturbance Equation (NLDE) framework. The direct noise computation is tackled with a modified version of the full compressible Navier-Stokes equations suitable for moderately compressible flow problems as often present in Computational Aeroacoustics. The formulation enables a formulation of the viscous stress and subfilter contributions in terms of a vector force model that supports an efficient computational treatment. The presented FES method carries on with the development of a stochastic backscatter model for technical applications. The subfilter forcing model provides a combination of dissipation and forcing that yields an additional driving mechanism of the turbulent energy cascade–otherwise not present in purely dissipative models – which enables a rapid onset of fluctuations in the simulation without gray areas. First, simulations of two isolated single stream jets in static condition with nozzle exit Mach number 0.6 and 0.9 are performed to verify the simulation method for the simpler test case of an isolated jet. A second configuration concerns an installed Ultra High Bypass Ratio (UHBR) nozzle below a wing with deployed flap in forward flight at approach condition with a flap deflection of 25°. The simulation considers the entire wind tunnel setup of a related experiment conducted in the Acoustic Windtunnel Braunschweig (AWB).

elib-URL des Eintrags:https://elib.dlr.de/122111/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Towards Forced Eddy Simulation of Airframe Induced Noise Radiation from Coherent Hydrodynamic Structures of Jet Flow
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Neifeld, AndrejAndrej.Neifeld (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Ewert, RolandRoland.Ewert (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Juni 2018
Erschienen in:24th AIAA/CEAS Aeroacoustics Conference, 2018
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
DOI:10.2514/6.2018-3463
Verlag:AIAA
ISBN:978-162410560-9
Status:veröffentlicht
Stichwörter:Forced Eddy Simulation, stochastic backscattering, scale resolving simulation, jet noise, single stream jet, installation effect, jet-flap interaction
Veranstaltungstitel:AIAA Aviation Forum 2018
Veranstaltungsort:Atlanta, Georgia, USA
Veranstaltungsart:internationale Konferenz
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Flugzeuge
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L AR - Aircraft Research
DLR - Teilgebiet (Projekt, Vorhaben):L - Simulation und Validierung (alt)
Standort: Braunschweig
Institute & Einrichtungen:Institut für Aerodynamik und Strömungstechnik > Technische Akustik
Hinterlegt von: Neifeld, Dr.-Ing. Andrej
Hinterlegt am:13 Nov 2018 15:50
Letzte Änderung:18 Jul 2023 14:21

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.