elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Articulated Soft Robot Control: Nonlinear elastic resonance modes for efficient robot and biological locomotion

Albu-Schäffer, Alin Olimpiu (2018) Articulated Soft Robot Control: Nonlinear elastic resonance modes for efficient robot and biological locomotion. IROS, International Conference on Intelligent Robots and Systems, 2018-10-01 - 2018-10-05, Madrid. (nicht veröffentlicht)

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Controlling motion robustly and at low energetic cost, both from mechanical and computational point of view, certainly constitutes one of the major locomotion challenges in biology and robotics. We attempt to demonstrate that robots can be designed and controlled to walk highly efficient by exploiting resonance body effects, increasing the performance compared to rigid body designs. To do so, however, legged robots need to achieve limit cycle motions of the highly coupled, non-linear body dynamics. This led us to the research of the still not very well understood theory of nonlinear system intrinsic modal oscillation control. I will present current theoretical and experimental results therewith. One of the striking results is that biomechanics, in particular kinematics, visco-elastic and inertial properties of biological limbs are such that coordinated resonant motions of multiple joints intrinsically emerges and is therefore easy to excite and sustain. This can be also achieved by careful design for robotic systems. Moreover, I will present a significant extension of our previous work on compliance control of flexible joint robots, which allow implementing all control features of the DLR-light-weight robots also on highly, elastic, Variable Compliance Robots, such as the DLR humanoid David. Some of the basic robotics control functions we developed for locomotion strikingly resemble neural functionalities and structures. For example, Hebbian lerning, one of the most basic principles of synaptic plasticity, is mathematically equivalent to robotic controllers which adapt to previously unknown resonance properties of the body. Based on the robot control approach, we propose an equivalent neural model involving neural plasticity in the spine and the serotonergic loop in the brain-stem. This hypothesis is supported by numerous experimental evidences from neuroscience.

elib-URL des Eintrags:https://elib.dlr.de/121974/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Articulated Soft Robot Control: Nonlinear elastic resonance modes for efficient robot and biological locomotion
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Albu-Schäffer, Alin OlimpiuAlin.Albu-Schaeffer (at) dlr.dehttps://orcid.org/0000-0001-5343-9074NICHT SPEZIFIZIERT
Datum:5 Oktober 2018
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:nicht veröffentlicht
Stichwörter:Soft Robot, biological locomotion, legged robots
Veranstaltungstitel:IROS, International Conference on Intelligent Robots and Systems
Veranstaltungsort:Madrid
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:1 Oktober 2018
Veranstaltungsende:5 Oktober 2018
Veranstalter :IEEE
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Technik für Raumfahrtsysteme
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R SY - Technik für Raumfahrtsysteme
DLR - Teilgebiet (Projekt, Vorhaben):R - On-Orbit Servicing [SY]
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Robotik und Mechatronik (ab 2013)
Hinterlegt von: Beinhofer, Gabriele
Hinterlegt am:29 Nov 2018 15:56
Letzte Änderung:24 Apr 2024 20:26

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.