Whittle, Lisa (2017) Stochastic Optimal Trajectory Generation via Multivariate Polynomial Chaos. Masterarbeit, Institute of Space Systems.
PDF
18MB |
Kurzfassung
This thesis presents a framework that has been developed in order to compute stochastic optimal trajectories. This is achieved by transforming the initial set of stochastic ordinary differential equations into their deterministic equivalent by application of Multivariate Polynomial Chaos. Via Galerkin projection, it is possible to include stochastic information in the optimal-trajectory generation process, and to solve the corresponding optimal-control problem using pseudospectral methods. The resultant trajectory is therefore less sensitive to the uncertainties included in the analysis, e.g., those present in system parameters, initial conditions or path constraints. The accurate, yet computationally efficient manner in which solutions are obtained is presented and a comparison with deterministic results show the benefits of the proposed approach for a variety of numerical examples
elib-URL des Eintrags: | https://elib.dlr.de/121957/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Hochschulschrift (Masterarbeit) | ||||||||
Titel: | Stochastic Optimal Trajectory Generation via Multivariate Polynomial Chaos | ||||||||
Autoren: |
| ||||||||
Datum: | September 2017 | ||||||||
Referierte Publikation: | Nein | ||||||||
Open Access: | Ja | ||||||||
Seitenanzahl: | 87 | ||||||||
Status: | veröffentlicht | ||||||||
Stichwörter: | Optimal Control, Stochastic Optimization, Polynomial Chaos, Pseudospectral Methods | ||||||||
Institution: | Institute of Space Systems | ||||||||
Abteilung: | Guidance, Navigation, and Control | ||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
HGF - Programm: | Raumfahrt | ||||||||
HGF - Programmthema: | Raumtransport | ||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||
DLR - Forschungsgebiet: | R RP - Raumtransport | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Projekt ReFEx - Reusability Flight Experiment | ||||||||
Standort: | Bremen | ||||||||
Institute & Einrichtungen: | Institut für Raumfahrtsysteme > Navigations- und Regelungssysteme | ||||||||
Hinterlegt von: | Sagliano, Marco | ||||||||
Hinterlegt am: | 02 Okt 2018 12:26 | ||||||||
Letzte Änderung: | 31 Jul 2019 20:19 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags